
PySAT Documentation
Release 1.8.dev17

Alexey Ignatiev, Joao Marques-Silva, Antonio Morgado

Jun 02, 2025

CONTENTS

1 API documentation 3
1.1 Core PySAT modules . 3

1.1.1 Cardinality encodings (pysat.card) . 3
1.1.2 Boolean formula manipulation (pysat.formula) . 9
1.1.3 External engines (pysat.engines) . 43
1.1.4 Pseudo-Boolean encodings (pysat.pb) . 49
1.1.5 Formula processing (pysat.process) . 51
1.1.6 SAT solvers’ API (pysat.solvers) . 55

1.2 Supplementary examples package . 72
1.2.1 Fu&Malik MaxSAT algorithm (pysat.examples.fm) . 72
1.2.2 Hard formula generator (pysat.examples.genhard) . 75
1.2.3 Minimum/minimal hitting set solver (pysat.examples.hitman) 78
1.2.4 LBX-like MCS enumerator (pysat.examples.lbx) . 82
1.2.5 LSU algorithm for MaxSAT (pysat.examples.lsu) . 86
1.2.6 CLD-like MCS enumerator (pysat.examples.mcsls) . 88
1.2.7 An iterative model enumerator (pysat.examples.models) 92
1.2.8 A deletion-based MUS extractor (pysat.examples.musx) 93
1.2.9 OptUx optimal MUS enumerator (pysat.examples.optux) 95
1.2.10 RC2 MaxSAT solver (pysat.examples.rc2) . 98

1.3 Supplementary allies package . 106
1.3.1 ApproxMC model counter (pysat.allies.approxmc) 106
1.3.2 UniGen almost-uniform sampler (pysat.allies.unigen) 108

Python Module Index 113

Index 115

i

ii

PySAT Documentation, Release 1.8.dev17

This site covers the usage and API documentation of the PySAT toolkit. For the basic information on what PySAT is,
please, see the main project website.

CONTENTS 1

https://pysathq.github.io

PySAT Documentation, Release 1.8.dev17

2 CONTENTS

CHAPTER

ONE

API DOCUMENTATION

The PySAT toolkit has five core modules: card , formula, pb, process and solvers. The four of them (card , pb,
process and solvers) are Python wrappers for the code originally implemented in the C/C++ languages while the
formula module is a pure Python module. Version 0.1.4.dev0 of PySAT brings a new module called pb, which is a
wrapper for the basic functionality of a third-party library PyPBLib developed by the Logic Optimization Group of the
University of Lleida.

A supplementary sixth module examples presents a list of scripts, which are supposed to demonstrate how the toolkit
can be used for practical problem solving. The module includes a formula generator, several MaxSAT solvers including
an award-winning RC2, a few (S)MUS extractors and enumerators as well as MCS enumerators, among other scripts.

Finally, an additional seventh module allies brought by version 0.1.8.dev3 is meant to provide access to a number of
third-party tools important for practical SAT-based problem solving.

1.1 Core PySAT modules

1.1.1 Cardinality encodings (pysat.card)

List of classes

EncType This class represents a C-like enum type for choosing the
cardinality encoding to use.

CardEnc This abstract class is responsible for the creation of car-
dinality constraints encoded to a CNF formula.

ITotalizer This class implements the iterative totalizer encoding11.

11 Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, Inês Lynce. Incremental Cardinality Constraints for MaxSAT. CP 2014. pp. 531-548

3

https://pypi.org/project/pypblib/
http://ulog.udl.cat/

PySAT Documentation, Release 1.8.dev17

Module description

This module provides access to various cardinality constraint1 encodings to formulas in conjunctive normal form
(CNF). These include pairwise2, bitwise2, ladder/regular34, sequential counters5, sorting6 and cardinality networks7,
totalizer8, modulo totalizer9, and modulo totalizer for 𝑘-cardinality10, as well as a native cardinality constraint repre-
sentation supported by the MiniCard solver.

A cardinality constraint is a constraint of the form:
∑︀𝑛

𝑖=1 𝑥𝑖 ≤ 𝑘. Cardinality constraints are ubiquitous in practical
problem formulations. Note that the implementation of the pairwise, bitwise, and ladder encodings can only deal with
AtMost1 constraints, e.g.

∑︀𝑛
𝑖=1 𝑥𝑖 ≤ 1.

Access to all cardinality encodings can be made through the main class of this module, which is CardEnc.

Additionally, to the standard cardinality encodings that are basically “static” CNF formulas, the module is designed
to able to construct incremental cardinality encodings, i.e. those that can be incrementally extended at a later stage.
At this point only the iterative totalizer? encoding is supported. Iterative totalizer can be accessed with the use of the
ITotalizer class.

Module details

class pysat.card.CardEnc

This abstract class is responsible for the creation of cardinality constraints encoded to a CNF formula. The class
has three class methods for creating AtMostK, AtLeastK, and EqualsK constraints. Given a list of literals, an
integer bound and an encoding type, each of these methods returns an object of class pysat.formula.CNFPlus
representing the resulting CNF formula.

Since the class is abstract, there is no need to create an object of it. Instead, the methods should be called directly
as class methods, e.g. CardEnc.atmost(lits, bound) or CardEnc.equals(lits, bound). An example
usage is the following:

>>> from pysat.card import *
>>> cnf = CardEnc.atmost(lits=[1, 2, 3], encoding=EncType.pairwise)
>>> print(cnf.clauses)
[[-1, -2], [-1, -3], [-2, -3]]
>>> cnf = CardEnc.equals(lits=[1, 2, 3], encoding=EncType.pairwise)
>>> print(cnf.clauses)
[[1, 2, 3], [-1, -2], [-1, -3], [-2, -3]]

classmethod atleast(lits, bound=1, top_id=None, vpool=None, encoding=1)
This method can be used for creating a CNF encoding of an AtLeastK constraint, i.e. of

∑︀𝑛
𝑖=1 𝑥𝑖 ≥ 𝑘.

The method takes 1 mandatory argument lits and 3 default arguments can be specified: bound, top_id,
vpool, and encoding.

1 Olivier Roussel, Vasco M. Manquinho. Pseudo-Boolean and Cardinality Constraints. Handbook of Satisfiability. 2009. pp. 695-733
2 Steven David Prestwich. CNF Encodings. Handbook of Satisfiability. 2009. pp. 75-97
3 Carlos Ansótegui, Felip Manyà. Mapping Problems with Finite-Domain Variables to Problems with Boolean Variables. SAT (Selected Papers)

2004. pp. 1-15
4 Ian P. Gent, Peter Nightingale. A New Encoding of Alldifferent Into SAT. In International workshop on modelling and reformulating constraint

satisfaction problems 2004. pp. 95-110
5 Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. CP 2005. pp. 827-831
6 Kenneth E. Batcher. Sorting Networks and Their Applications. AFIPS Spring Joint Computing Conference 1968. pp. 307-314
7 Roberto Asin, Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell. Cardinality Networks and Their Applications. SAT 2009. pp.

167-180
8 Olivier Bailleux, Yacine Boufkhad. Efficient CNF Encoding of Boolean Cardinality Constraints. CP 2003. pp. 108-122
9 Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, Hiroshi Fujita. Modulo Based CNF Encoding of Cardinality Constraints

and Its Application to MaxSAT Solvers. ICTAI 2013. pp. 9-17
10 António Morgado, Alexey Ignatiev, Joao Marques-Silva. MSCG: Robust Core-Guided MaxSAT Solving. System Description. JSAT 2015. vol.

9, pp. 129-134

4 Chapter 1. API documentation

https://github.com/liffiton/minicard

PySAT Documentation, Release 1.8.dev17

Parameters

• lits (iterable(int)) – a list of literals in the sum.

• bound (int) – the value of bound 𝑘.

• top_id (integer or None) – top variable identifier used so far.

• vpool (IDPool) – variable pool for counting the number of variables.

• encoding (integer) – identifier of the encoding to use.

Parameter top_id serves to increase integer identifiers of auxiliary variables introduced during the encod-
ing process. This is helpful when augmenting an existing CNF formula with the new cardinality encoding
to make sure there is no collision between identifiers of the variables. If specified, the identifiers of the first
auxiliary variable will be top_id+1.

Instead of top_id, one may want to use a pool of variable identifiers vpool, which is automatically updated
during the method call. In many circumstances, this is more convenient than using top_id. Also note that
parameters top_id and vpool cannot be specified simultaneously.

The default value of encoding is Enctype.seqcounter.

The method translates the AtLeast constraint into an AtMost constraint by negating the literals of lits,
creating a new bound 𝑛−𝑘 and invoking CardEnc.atmost()with the modified list of literals and the new
bound.

Raises

• CardEnc.NoSuchEncodingError – if encoding does not exist.

• ValueError – if bound is meaningless for encoding.

Return type a CNFPlus object where the new clauses (or the new native atmost constraint) are
stored.

classmethod atmost(lits, bound=1, top_id=None, vpool=None, encoding=1)
This method can be used for creating a CNF encoding of an AtMostK constraint, i.e. of

∑︀𝑛
𝑖=1 𝑥𝑖 ≤ 𝑘.

The method shares the arguments and the return type with method CardEnc.atleast(). Please, see it for
details.

classmethod equals(lits, bound=1, top_id=None, vpool=None, encoding=1)
This method can be used for creating a CNF encoding of an EqualsK constraint, i.e. of

∑︀𝑛
𝑖=1 𝑥𝑖 = 𝑘.

The method makes consecutive calls of both CardEnc.atleast() and CardEnc.atmost(). It shares the
arguments and the return type with method CardEnc.atleast(). Please, see it for details.

class pysat.card.EncType

This class represents a C-like enum type for choosing the cardinality encoding to use. The values denoting the
encodings are:

pairwise = 0
seqcounter = 1
sortnetwrk = 2
cardnetwrk = 3
bitwise = 4
ladder = 5
totalizer = 6
mtotalizer = 7
kmtotalizer = 8
native = 9

1.1. Core PySAT modules 5

PySAT Documentation, Release 1.8.dev17

The desired encoding can be selected either directly by its integer identifier, e.g. 2, or by its alphabetical name,
e.g. EncType.sortnetwrk.

Note that while most of the encodings are produced as a list of clauses, the “native” encoding of MiniCard is
managed as one clause. Given an AtMostK constraint

∑︀𝑛
𝑖=1 𝑥𝑖 ≤ 𝑘, the native encoding represents it as a pair

[lits, k], where lits is a list of size n containing literals in the sum.

class pysat.card.ITotalizer(lits=[], ubound=1, top_id=None)
This class implements the iterative totalizer encoding?. Note that ITotalizer can be used only for creating
AtMostK constraints. In contrast to class EncType, this class is not abstract and its objects once created can be
reused several times. The idea is that a totalizer tree can be extended, or the bound can be increased, as well as
two totalizer trees can be merged into one.

The constructor of the class object takes 3 default arguments.

Parameters

• lits (iterable(int)) – a list of literals to sum.

• ubound (int) – the largest potential bound to use.

• top_id (integer or None) – top variable identifier used so far.

The encoding of the current tree can be accessed with the use of CNF variable stored as self.cnf. Potential
bounds are not imposed by default but can be added as unit clauses in the final CNF formula. The bounds are
stored in the list of Boolean variables as self.rhs. A concrete bound 𝑘 can be enforced by considering a unit
clause -self.rhs[k]. Note that -self.rhs[0] enforces all literals of the sum to be false.

An ITotalizer object should be deleted if it is not needed anymore.

Possible usage of the class is shown below:

>>> from pysat.card import ITotalizer
>>> t = ITotalizer(lits=[1, 2, 3], ubound=1)
>>> print(t.cnf.clauses)
[[-2, 4], [-1, 4], [-1, -2, 5], [-4, 6], [-5, 7], [-3, 6], [-3, -4, 7]]
>>> print(t.rhs)
[6, 7]
>>> t.delete()

Alternatively, an object can be created using the with keyword. In this case, the object is deleted automatically:

>>> from pysat.card import ITotalizer
>>> with ITotalizer(lits=[1, 2, 3], ubound=1) as t:
... print(t.cnf.clauses)
[[-2, 4], [-1, 4], [-1, -2, 5], [-4, 6], [-5, 7], [-3, 6], [-3, -4, 7]]
... print(t.rhs)
[6, 7]

delete()

Destroys a previously constructed ITotalizer object. Internal variables self.cnf and self.rhs get
cleaned.

extend(lits=[], ubound=None, top_id=None)
Extends the list of literals in the sum and (if needed) increases a potential upper bound that can be imposed
on the complete list of literals in the sum of an existing ITotalizer object to a new value.

Parameters

• lits (iterable(int)) – additional literals to be included in the sum.

6 Chapter 1. API documentation

https://github.com/liffiton/minicard

PySAT Documentation, Release 1.8.dev17

• ubound (int) – a new upper bound.

• top_id (integer or None) – a new top variable identifier.

The top identifier top_id applied only if it is greater than the one used in self.

This method creates additional clauses encoding the existing totalizer tree augmented with new literals in
the sum and updating the upper bound. As a result, it appends the new clauses to the list of clauses of CNF
self.cnf. The number of newly created clauses is stored in variable self.nof_new.

Also, if the upper bound is updated, a list of bounds self.rhs gets increased and its length becomes
ubound+1. Otherwise, it is updated with new values.

The method can be used in the following way:

>>> from pysat.card import ITotalizer
>>> t = ITotalizer(lits=[1, 2], ubound=1)
>>> print(t.cnf.clauses)
[[-2, 3], [-1, 3], [-1, -2, 4]]
>>> print(t.rhs)
[3, 4]
>>>
>>> t.extend(lits=[5], ubound=2)
>>> print(t.cnf.clauses)
[[-2, 3], [-1, 3], [-1, -2, 4], [-5, 6], [-3, 6], [-4, 7], [-3, -5, 7], [-4, -5,
→˓ 8]]
>>> print(t.cnf.clauses[-t.nof_new:])
[[-5, 6], [-3, 6], [-4, 7], [-3, -5, 7], [-4, -5, 8]]
>>> print(t.rhs)
[6, 7, 8]
>>> t.delete()

increase(ubound=1, top_id=None)
Increases a potential upper bound that can be imposed on the literals in the sum of an existing ITotalizer
object to a new value.

Parameters

• ubound (int) – a new upper bound.

• top_id (integer or None) – a new top variable identifier.

The top identifier top_id applied only if it is greater than the one used in self.

This method creates additional clauses encoding the existing totalizer tree up to the new upper bound given
and appends them to the list of clauses of CNF self.cnf. The number of newly created clauses is stored
in variable self.nof_new.

Also, a list of bounds self.rhs gets increased and its length becomes ubound+1.

The method can be used in the following way:

>>> from pysat.card import ITotalizer
>>> t = ITotalizer(lits=[1, 2, 3], ubound=1)
>>> print(t.cnf.clauses)
[[-2, 4], [-1, 4], [-1, -2, 5], [-4, 6], [-5, 7], [-3, 6], [-3, -4, 7]]
>>> print(t.rhs)
[6, 7]
>>>

(continues on next page)

1.1. Core PySAT modules 7

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> t.increase(ubound=2)
>>> print(t.cnf.clauses)
[[-2, 4], [-1, 4], [-1, -2, 5], [-4, 6], [-5, 7], [-3, 6], [-3, -4, 7], [-3, -5,
→˓ 8]]
>>> print(t.cnf.clauses[-t.nof_new:])
[[-3, -5, 8]]
>>> print(t.rhs)
[6, 7, 8]
>>> t.delete()

merge_with(another, ubound=None, top_id=None)
This method merges a tree of the current ITotalizer object, with a tree of another object and (if needed)
increases a potential upper bound that can be imposed on the complete list of literals in the sum of an
existing ITotalizer object to a new value.

Parameters

• another (ITotalizer) – another totalizer to merge with.

• ubound (int) – a new upper bound.

• top_id (integer or None) – a new top variable identifier.

The top identifier top_id applied only if it is greater than the one used in self.

This method creates additional clauses encoding the existing totalizer tree merged with another totalizer
tree into one sum and updating the upper bound. As a result, it appends the new clauses to the list of clauses
of CNF self.cnf. The number of newly created clauses is stored in variable self.nof_new.

Also, if the upper bound is updated, a list of bounds self.rhs gets increased and its length becomes
ubound+1. Otherwise, it is updated with new values.

The method can be used in the following way:

>>> from pysat.card import ITotalizer
>>> with ITotalizer(lits=[1, 2], ubound=1) as t1:
... print(t1.cnf.clauses)
[[-2, 3], [-1, 3], [-1, -2, 4]]
... print(t1.rhs)
[3, 4]
...
... t2 = ITotalizer(lits=[5, 6], ubound=1)
... print(t1.cnf.clauses)
[[-6, 7], [-5, 7], [-5, -6, 8]]
... print(t1.rhs)
[7, 8]
...
... t1.merge_with(t2)
... print(t1.cnf.clauses)
[[-2, 3], [-1, 3], [-1, -2, 4], [-6, 7], [-5, 7], [-5, -6, 8], [-7, 9], [-8,␣
→˓10], [-3, 9], [-4, 10], [-3, -7, 10]]
... print(t1.cnf.clauses[-t1.nof_new:])
[[-6, 7], [-5, 7], [-5, -6, 8], [-7, 9], [-8, 10], [-3, 9], [-4, 10], [-3, -7,␣
→˓10]]
... print(t1.rhs)
[9, 10]

(continues on next page)

8 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

...

... t2.delete()

new(lits=[], ubound=1, top_id=None)
The actual constructor of ITotalizer. Invoked from self.__init__(). Creates an object of
ITotalizer given a list of literals in the sum, the largest potential bound to consider, as well as the top
variable identifier used so far. See the description of ITotalizer for details.

exception pysat.card.NoSuchEncodingError

This exception is raised when creating an unknown an AtMostK, AtLeastK, or EqualK constraint encoding.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pysat.card.UnsupportedBound

This exception is raised when creating a pairwise, or bitwise, or ladder encoding of AtMostK, AtLeastK, or
EqualsK with the bound different from 1 and N - 1.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

1.1.2 Boolean formula manipulation (pysat.formula)

List of classes

IDPool A simple manager of variable IDs.
Formula Abstract formula class.
Atom Atomic formula, i.e. a variable or constant.
And Conjunction.
Or Disjunction.
Neg Negation.
Implies Implication.
Equals Equivalence.
XOr Exclusive disjunction.
ITE If-then-else operator.
CNF Class for manipulating CNF formulas.
CNFPlus CNF formulas augmented with native cardinality con-

straints.
WCNF Class for manipulating partial (weighted) CNF formulas.
WCNFPlus WCNF formulas augmented with native cardinality con-

straints.

1.1. Core PySAT modules 9

PySAT Documentation, Release 1.8.dev17

Module description

This module is designed to facilitate fast and easy PySAT-development by providing a simple way to manipulate for-
mulas in PySAT. The toolkit implements several facilities to manupulate Boolean formulas. Namely, one can opt for
creating arbitrary non-clausal formulas suitable for simple problem encodings requiring no or little knowledge about
the process of logical encoding. However, the main and most often used kind of formula in PySAT is represented by
the CNF class, which can be used to define a formula in conjunctive normal form (CNF).

Recall that a CNF formula is conventionally seen as a set of clauses, each being a set of literals. A literal is a Boolean
variable or its negation. In PySAT, a Boolean variable and a literal should be specified as an integer. For instance,
a Boolean variable 𝑥25 is represented as integer 25. A literal ¬𝑥10 should be specified as -10. Moreover, a clause
(¬𝑥2 ∨ 𝑥19 ∨ 𝑥46) should be specified as [-2, 19, 46] in PySAT. Unit size clauses are to be specified as unit size
lists as well, e.g. a clause (𝑥3) is a list [3].

CNF formulas can be created as an object of class CNF. For instance, the following piece of code creates a CNF formula
(¬𝑥1 ∨ 𝑥2) ∧ (¬𝑥2 ∨ 𝑥3).

>>> from pysat.formula import CNF
>>> cnf = CNF()
>>> cnf.append([-1, 2])
>>> cnf.append([-2, 3])

The clauses of a formula can be accessed through the clauses variable of class CNF, which is a list of lists of integers:

>>> print(cnf.clauses)
[[-1, 2], [-2 ,3]]

The number of variables in a CNF formula, i.e. the largest variable identifier, can be obtained using the nv variable,
e.g.

>>> print(cnf.nv)
3

Class CNF has a few methods to read and write a CNF formula into a file or a string. The formula is read/written in the
standard DIMACS CNF format. A clause in the DIMACS format is a string containing space-separated integer literals
followed by 0. For instance, a clause (¬𝑥2∨𝑥19∨𝑥46) is written as -2 19 46 0 in DIMACS. The clauses in DIMACS
should be preceded by a preamble, which is a line p cnf nof_variables nof_clauses, where nof_variables
and nof_clauses are integers. A preamble line for formula (¬𝑥1 ∨ 𝑥2) ∧ (¬𝑥2 ∨ 𝑥3) would be p cnf 3 2. The
complete DIMACS file describing the formula looks this:

p cnf 3 2
-1 2 0
-2 3 0

Reading and writing formulas in DIMACS can be done with PySAT in the following way:

>>> from pysat.formula import CNF
>>> f1 = CNF(from_file='some-file-name.cnf') # reading from file
>>> f1.to_file('another-file-name.cnf') # writing to a file
>>>
>>> with open('some-file-name.cnf', 'r+') as fp:
... f2 = CNF(from_fp=fp) # reading from a file pointer
...
... fp.seek(0)
... f2.to_fp(fp) # writing to a file pointer

(continues on next page)

10 Chapter 1. API documentation

https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem#SAT_problem_format

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>>
>>> f3 = CNF(from_string='p cnf 3 3\n-1 2 0\n-2 3 0\n-3 0\n')
>>> print(f3.clauses)
[[-1, 2], [-2, 3], [-3]]
>>> print(f3.nv)
3

Besides plain CNF formulas, the pysat.formula module implements an additional class for dealing with partial and
weighted partial CNF formulas, i.e. WCNF formulas. A WCNF formula is a conjunction of two sets of clauses: hard
clauses and soft clauses, i.e. ℱ = ℋ ∧ 𝒮. Soft clauses of a WCNF are labeled with integer weights, i.e. a soft clause
of 𝒮 is a pair (𝑐𝑖, 𝑤𝑖). In partial (unweighted) formulas, all soft clauses have weight 1.

WCNF can be of help when solving optimization problems using the SAT technology. A typical example of where a
WCNF formula can be used is maximum satisfiability (MaxSAT), which given a WCNF formula ℱ = ℋ ∧ 𝒮 targets
satisfying all its hard clausesℋ and maximizing the sum of weights of satisfied soft clauses, i.e. maximizing the value
of

∑︀
𝑐𝑖∈𝒮 𝑤𝑖 · 𝑐𝑖.

An object of class WCNF has two variables to access the hard and soft clauses of the corresponding formula: hard and
soft. The weights of soft clauses are stored in variable wght.

>>> from pysat.formula import WCNF
>>>
>>> wcnf = WCNF()
>>> wcnf.append([-1, -2])
>>> wcnf.append([1], weight=1)
>>> wcnf.append([2], weight=3) # the formula becomes unsatisfiable
>>>
>>> print(wcnf.hard)
[[-1, -2]]
>>> print(wcnf.soft)
[[1], [2]]
>>> print(wcnf.wght)
[1, 3]

A properly constructed WCNF formula must have a top weight, which should be equal to 1 +
∑︀

𝑐𝑖∈𝒮 𝑤𝑖. Top weight
of a formula can be accessed through variable topw.

>>> wcnf.topw = sum(wcnf.wght) + 1 # (1 + 3) + 1
>>> print(wcnf.topw)
5

Note: Although it is not aligned with the WCNF format description, starting with the 0.1.5.dev8 release, PySAT is
able to deal with WCNF formulas having not only integer clause weights but also weights represented as floating point
numbers. Moreover, negative weights are also supported.

Additionally to classes CNF and WCNF, the module provides the extended classes CNFPlus and WCNFPlus. The only
difference between ?CNF and ?CNFPlus is the support for native cardinality constraints provided by the MiniCard solver
(see pysat.card for details). The corresponding variable in objects of CNFPlus (WCNFPlus, resp.) responsible for
storing the AtMostK constraints is atmosts (atms, resp.). Note that at this point, AtMostK constraints in WCNF can be
hard only.

Apart from the aforementioned variants of (W)CNF formulas, the module now offers a few additional classes for
managing non-clausal Boolean formulas. Namely, a user may create complex formulas using variables (atomic formulas

1.1. Core PySAT modules 11

https://en.wikipedia.org/wiki/Maximum_satisfiability_problem
https://github.com/liffiton/minicard

PySAT Documentation, Release 1.8.dev17

implemented as objects of class Atom), and the following logic connectives: And , Or, Neg, Implies, Equals, XOr,
and ITE. (All of these classes inherit from the base class Formula.) Arbitrary combinations of these logic connectives
are allowed. Importantly, the module provides seamless integration of CNF and various subclasses of Formula with
the possibility to clausify these on demand.

>>> from pysat.formula import *
>>> from pysat.solvers import Solver

creating two formulas: CNF and XOr
>>> cnf = CNF(from_clauses=[[-1, 2], [-2, 3]])
>>> xor = Atom(1) ^ Atom(2) ^ Atom(4)

passing the conjunction of these to the solver
>>> with Solver(bootstrap_with=xor & cnf) as solver:
... # setting Atom(3) to false results in only one model
... for model in solver.enum_models(assumptions=Formula.literals([~Atom(3)])):
... print(Formula.formulas(model, atoms_only=True)) # translating the model back␣
→˓to atoms
>>>
[Neg(Atom(1)), Neg(Atom(2)), Neg(Atom(3)), Atom(4)]

Note: Combining CNF formulas with non-CNF ones will not necessarily result in the best possible encoding of
the complex formula. The on-the-fly encoder may introduce variables that a human would avoid using, e.g. if cnf1
and cnf2 are CNF formulas then And(cnf1, cnf2) will introduce auxiliary variables v1 and v2 encoding them,
respectively (although it is enough to join their sets of clauses).

Besides the implementations of CNF and WCNF formulas in PySAT, the pysat.formula module also provides a way
to manage variable identifiers. This can be done with the use of the IDPool manager. With the use of the CNF and
WCNF classes as well as with the IDPool variable manager, it is pretty easy to develop practical problem encoders into
SAT or MaxSAT/MinSAT. As an example, a PHP formula encoder is shown below (the implementation can also be
found in examples.genhard.PHP).

from pysat.formula import CNF
cnf = CNF() # we will store the formula here

nof_holes is given

initializing the pool of variable ids
vpool = IDPool(start_from=1)
pigeon = lambda i, j: vpool.id('pigeon{0}@{1}'.format(i, j))

placing all pigeons into holes
for i in range(1, nof_holes + 2):

cnf.append([pigeon(i, j) for j in range(1, nof_holes + 1)])

there cannot be more than 1 pigeon in a hole
pigeons = range(1, nof_holes + 2)
for j in range(1, nof_holes + 1):

for comb in itertools.combinations(pigeons, 2):
cnf.append([-pigeon(i, j) for i in comb])

12 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

Module details

class pysat.formula.And(*args, **kwargs)
Conjunction. Given a list of operands (subformulas) 𝑓𝑖, 𝑖 ∈ {1, . . . , 𝑛}, 𝑛 ∈ N, it creates a formula

⋀︀𝑛
𝑖=1 𝑓𝑖.

The list of operands of size at least 1 should be passed as arguments to the constructor.

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> conj = And(x, y, z)

If an additional Boolean keyword argument merge is provided set to True, the toolkit will try to flatten the
current And formula merging its conjuctive sub-operands into the list of operands. For example, if And(And(x,
y), z, merge=True) is called, a new Formula object will be created with two operands: And(x, y) and z,
followed by merging x and y into the list of root-level And. This will result in a formula And(x, y, z). Merging
sub-operands is enabled by default if bitwise operations are used to create And formulas.

Example:

>>> from pysat.formula import *
>>> a1 = And(And(Atom('x'), Atom('y')), Atom('z'))
>>> a2 = And(And(Atom('x'), Atom('y')), Atom('z'), merge=True)
>>> a3 = Atom('x') & Atom('y') & Atom('z')
>>>
>>> repr(a1)
"And[And[Atom('x'), Atom('y')], Atom('z')]"
>>> repr(a2)
"And[Atom('x'), Atom('y'), Atom('z')]"
>>> repr(a2)
"And[Atom('x'), Atom('y'), Atom('z')]"
>>>
>>> id(a1) == id(a2)
False
>>>
>>> id(a2) == id(a3)
True # formulas a2 and a3 refer to the same object

Note: If there are two formulas representing the same fact with and without merging enabled, they technically
sit in two distinct objects. Although PySAT tries to avoid it, clausification of these two formulas may result in
unique (different) auxiliary variables assigned to such two formulas.

simplified(assumptions=[])
Given a list of assumption literals, recursively simplifies the subformulas and creates a new formula.

Parameters assumptions (list(Formula)) – atomic assumptions

Return type Formula

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> a = x & y & z

(continues on next page)

1.1. Core PySAT modules 13

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>>
>>> print(a.simplified(assumptions=[y]))
x & z
>>> print(a.simplified(assumptions=[~y]))
F # False

class pysat.formula.Atom(*args, **kwargs)
Atomic formula, i.e. a variable or constant. Although we often refer to negated literals as atomic formulas too,
they are techically implemented as Neg(Atom).

To create an atomic formula, a user needs to specify an object this formula should signify. When it comes to
clausifying the formulas this atom is involved in, the atom receives an auxiliary variable assigned to it as a name.

Example:

>>> from pysat.formula import *
>>> x = Atom('x')
>>> y = Atom(object='y')
>>> # checking x's name
>>> x.name
>>> # None
>>> # right, that's because the atom is not yet clausified
>>> x.clausify()
>>> x.name
1

If a given object is a positive integer (negative integers aren’t allowed), the integer itself serves as the atom’s
name, which is assigned in the constructor, i.e. no call to clausify() is required.

Example:

>>> from pysat.formula import Atom
>>> x, y = Atom(1), Atom(2)
>>> x.name
1
>>> y.name
2

Special atoms are reserved for the Boolean constants True and False. Namely, Atom(False) and Atom(True)
can be accessed through the constants PYSAT_FALSE and PYSAT_TRUE, respectively.

Example:

>>> from pysat.formula import *
>>>
>>> print(PYSAT_TRUE, repr(PYSAT_TRUE))
T Atom(True)
>>>
>>> print(PYSAT_FALSE, repr(PYSAT_FALSE))
F Atom(False)

Note: Constant Atom(True) is distinguished from variable Atom(1) by checking the type of the object (bool
vs int).

14 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

simplified(assumptions=[])
Checks if the current literal appears in the list of assumptions provided in argument assumptions. If it
is, the method returns PYSAT_TRUE. If the opposite atom is present in assumptions, the method returns
PYSAT_FALSE. Otherwise, it return self.

Parameters assumptions (list(Formula)) – atomic assumptions

Return type PYSAT_TRUE, PYSAT_FALSE, or self

class pysat.formula.CNF(*args, **kwargs)
Class for manipulating CNF formulas. It can be used for creating formulas, reading them from a file, or writing
them to a file. The comment_lead parameter can be helpful when one needs to parse specific comment lines
starting not with character c but with another character or a string.

Parameters

• from_file (str) – a DIMACS CNF filename to read from

• from_fp (file_pointer) – a file pointer to read from

• from_string (str) – a string storing a CNF formula

• from_clauses (list(list(int))) – a list of clauses to bootstrap the formula with

• from_aiger (aiger.AIG (see py-aiger package)) – an AIGER circuit to bootstrap the for-
mula with

• comment_lead (list(str)) – a list of characters leading comment lines

• by_ref (bool) – flag to indicate how to copy clauses - by reference or deep-copy

append(clause, update_vpool=False)
Add one more clause to CNF formula. This method additionally updates the number of variables, i.e.
variable self.nv, used in the formula.

The additional keyword argument update_vpool can be set to True if the user wants to update for default
static pool of variable identifiers stored in class Formula. In light of the fact that a user may encode their
problem manually and add thousands to millions of clauses using this method, the value of update_vpool
is set to False by default.

Note: Setting update_vpool=True is required if a user wants to combine this CNF formula with other
(clausal or non-clausal) formulas followed by the clausification of the result combination. Alternatively, a
user may resort to using the method extend() instead.

Parameters

• clause (list(int)) – a new clause to add

• update_vpool (bool) – update or not the static vpool

>>> from pysat.formula import CNF
>>> cnf = CNF(from_clauses=[[-1, 2], [3]])
>>> cnf.append([-3, 4])
>>> print(cnf.clauses)
[[-1, 2], [3], [-3, 4]]

copy()

This method can be used for creating a copy of a CNF object. It creates another object of the CNF class and
makes use of the deepcopy functionality to copy the clauses.

1.1. Core PySAT modules 15

https://github.com/mvcisback/py-aiger

PySAT Documentation, Release 1.8.dev17

Returns an object of class CNF.

Example:

>>> cnf1 = CNF(from_clauses=[[-1, 2], [1]])
>>> cnf2 = cnf1.copy()
>>> print(cnf2.clauses)
[[-1, 2], [1]]
>>> print(cnf2.nv)
2

extend(clauses)
Add several clauses to CNF formula. The clauses should be given in the form of list. For every clause in
the list, method append() is invoked.

Parameters clauses (list(list(int))) – a list of new clauses to add

Example:

>>> from pysat.formula import CNF
>>> cnf = CNF(from_clauses=[[-1, 2], [3]])
>>> cnf.extend([[-3, 4], [5, 6]])
>>> print(cnf.clauses)
[[-1, 2], [3], [-3, 4], [5, 6]]

from_aiger(aig, vpool=None)
Create a CNF formula by Tseitin-encoding an input AIGER circuit.

Input circuit is expected to be an object of class aiger.AIG. Alternatively, it can be specified as an aiger.
BoolExpr, or an *.aag filename, or an AIGER string to parse. (Classes aiger.AIG and aiger.BoolExpr
are defined in the py-aiger package.)

Parameters

• aig (aiger.AIG (see py-aiger package)) – an input AIGER circuit

• vpool (IDPool) – pool of variable identifiers (optional)

Example:

>>> import aiger
>>> x, y, z = aiger.atom('x'), aiger.atom('y'), aiger.atom('z')
>>> expr = ~(x | y) & z
>>> print(expr.aig)
aag 5 3 0 1 2
2
4
8
10
6 3 5
10 6 8
i0 y
i1 x
i2 z
o0 6c454aea-c9e1-11e9-bbe3-3af9d34370a9
>>>
>>> from pysat.formula import CNF

(continues on next page)

16 Chapter 1. API documentation

https://github.com/mvcisback/py-aiger
https://github.com/mvcisback/py-aiger

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> cnf = CNF(from_aiger=expr.aig)
>>> print(cnf.nv)
5
>>> print(cnf.clauses)
[[3, 2, 4], [-3, -4], [-2, -4], [-4, -1, 5], [4, -5], [1, -5]]
>>> print(['{0} <-> {1}'.format(v, cnf.vpool.obj(v)) for v in cnf.inps])
['3 <-> y', '2 <-> x', '1 <-> z']
>>> print(['{0} <-> {1}'.format(v, cnf.vpool.obj(v)) for v in cnf.outs])
['5 <-> 6c454aea-c9e1-11e9-bbe3-3af9d34370a9']

from_clauses(clauses, by_ref=False)
This methods copies a list of clauses into a CNF object. The optional keyword argument by_ref, which
is by default set to False, signifies whether the clauses should be deep-copied or copied by reference (by
default, deep-copying is applied although it is slower).

Parameters

• clauses (list(list(int))) – a list of clauses

• by_ref (bool) – a flag to indicate whether to deep-copy the clauses or copy them by
reference

Example:

>>> from pysat.formula import CNF
>>> cnf = CNF(from_clauses=[[-1, 2], [1, -2], [5]])
>>> print(cnf.clauses)
[[-1, 2], [1, -2], [5]]
>>> print(cnf.nv)
5

from_file(fname, comment_lead=['c'], compressed_with='use_ext')
Read a CNF formula from a file in the DIMACS format. A file name is expected as an argument. A default
argument is comment_lead for parsing comment lines. A given file can be compressed by either gzip,
bzip2, or lzma.

Parameters

• fname (str) – name of a file to parse.

• comment_lead (list(str)) – a list of characters leading comment lines

• compressed_with (str) – file compression algorithm

Note that the compressed_with parameter can be None (i.e. the file is uncompressed), 'gzip', 'bzip2',
'lzma', or 'use_ext'. The latter value indicates that compression type should be automatically deter-
mined based on the file extension. Using 'lzma' in Python 2 requires the backports.lzma package to
be additionally installed.

Usage example:

>>> from pysat.formula import CNF
>>> cnf1 = CNF()
>>> cnf1.from_file('some-file.cnf.gz', compressed_with='gzip')
>>>
>>> cnf2 = CNF(from_file='another-file.cnf')

1.1. Core PySAT modules 17

PySAT Documentation, Release 1.8.dev17

from_fp(file_pointer, comment_lead=['c'])
Read a CNF formula from a file pointer. A file pointer should be specified as an argument. The only default
argument is comment_lead, which can be used for parsing specific comment lines.

Parameters

• file_pointer (file pointer) – a file pointer to read the formula from.

• comment_lead (list(str)) – a list of characters leading comment lines

Usage example:

>>> with open('some-file.cnf', 'r') as fp:
... cnf1 = CNF()
... cnf1.from_fp(fp)
>>>
>>> with open('another-file.cnf', 'r') as fp:
... cnf2 = CNF(from_fp=fp)

from_string(string, comment_lead=['c'])
Read a CNF formula from a string. The string should be specified as an argument and should be in the
DIMACS CNF format. The only default argument is comment_lead, which can be used for parsing specific
comment lines.

Parameters

• string (str) – a string containing the formula in DIMACS.

• comment_lead (list(str)) – a list of characters leading comment lines

Example:

>>> from pysat.formula import CNF
>>> cnf1 = CNF()
>>> cnf1.from_string('p cnf 2 2\n-1 2 0\n1 -2 0')
>>> print(cnf1.clauses)
[[-1, 2], [1, -2]]
>>>
>>> cnf2 = CNF(from_string='p cnf 3 3\n-1 2 0\n-2 3 0\n-3 0\n')
>>> print(cnf2.clauses)
[[-1, 2], [-2, 3], [-3]]
>>> print(cnf2.nv)
3

negate(topv=None)
Given a CNF formula ℱ , this method creates a CNF formula ¬ℱ . The negation of the formula is encoded
to CNF with the use of auxiliary Tseitin variables1. A new CNF formula is returned keeping all the newly
introduced variables that can be accessed through the auxvars variable. All the literals used to encode the
negation of the original clauses can be accessed through the enclits variable.

Note that the negation of each clause is encoded with one auxiliary variable if it is not unit size. Otherwise,
no auxiliary variable is introduced.

Parameters topv (int) – top variable identifier if any.

Returns an object of class CNF.
1 G. S. Tseitin. On the complexity of derivations in the propositional calculus. Studies in Mathematics and Mathematical Logic, Part II. pp.

115–125, 1968

18 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

>>> from pysat.formula import CNF
>>> pos = CNF(from_clauses=[[-1, 2], [3]])
>>> neg = pos.negate()
>>> print(neg.clauses)
[[1, -4], [-2, -4], [-1, 2, 4], [4, -3]]
>>> print(neg.auxvars)
[4]
>>> print(neg.enclits) # literals encoding the negation of clauses
[4, -3]

simplified(assumptions=[])
As any other Formula type, CNF formulas have this method, although intentionally left unimplemented.
Raises a FormulaError exception.

to_alien(file_pointer, format='opb', comments=None)
The method can be used to dump a CNF formula into a file pointer in an alien file format, which at this
point can either be LP, OPB, or SMT. The file pointer is expected as an argument. Additionally, the target
format ‘lp’, ‘opb’, or ‘smt’ may be specified (equal to ‘opb’ by default). Finally, supplementary comment
lines can be specified in the comments parameter.

Parameters

• file_pointer (file pointer) – a file pointer where to store the formula.

• format (str) – alien file format to use

• comments (list(str)) – additional comments to put in the file.

Example:

>>> from pysat.formula import CNF
>>> cnf = CNF()
...
>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.lp', 'w') as fp:
... cnf.to_alien(fp, format='lp') # writing to the file pointer

to_dimacs()

Return the current state of the object in DIMACS format.

For example, if ‘some-file.cnf’ contains:

c Example
p cnf 3 3
-1 2 0
-2 3 0
-3 0

Then you can obtain the DIMACS with:

>>> from pysat.formula import CNF
>>> cnf = CNF(from_file='some-file.cnf')
>>> print(cnf.to_dimacs())
c Example
p cnf 3 3
-1 2 0

(continues on next page)

1.1. Core PySAT modules 19

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

-2 3 0
-3 0

to_file(fname, comments=None, compress_with='use_ext')
The method is for saving a CNF formula into a file in the DIMACS CNF format. A file name is expected
as an argument. Additionally, supplementary comment lines can be specified in the comments parameter.
Also, a file can be compressed using either gzip, bzip2, or lzma (xz).

Parameters

• fname (str) – a file name where to store the formula.

• comments (list(str)) – additional comments to put in the file.

• compress_with (str) – file compression algorithm

Note that the compress_with parameter can be None (i.e. the file is uncompressed), 'gzip', 'bzip2',
'lzma', or 'use_ext'. The latter value indicates that compression type should be automatically deter-
mined based on the file extension. Using 'lzma' in Python 2 requires the backports.lzma package to
be additionally installed.

Example:

>>> from pysat.formula import CNF
>>> cnf = CNF()
...
>>> # the formula is filled with a bunch of clauses
>>> cnf.to_file('some-file-name.cnf') # writing to a file

to_fp(file_pointer, comments=None)
The method can be used to save a CNF formula into a file pointer. The file pointer is expected as an
argument. Additionally, supplementary comment lines can be specified in the comments parameter.

Parameters

• file_pointer (file pointer) – a file pointer where to store the formula.

• comments (list(str)) – additional comments to put in the file.

Example:

>>> from pysat.formula import CNF
>>> cnf = CNF()
...
>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.cnf', 'w') as fp:
... cnf.to_fp(fp) # writing to the file pointer

weighted()

This method creates a weighted copy of the internal formula. As a result, an object of class WCNF is returned.
Every clause of the CNF formula is soft in the new WCNF formula and its weight is equal to 1. The set of
hard clauses of the formula is empty.

Returns an object of class WCNF.

Example:

20 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

>>> from pysat.formula import CNF
>>> cnf = CNF(from_clauses=[[-1, 2], [3, 4]])
>>>
>>> wcnf = cnf.weighted()
>>> print(wcnf.hard)
[]
>>> print(wcnf.soft)
[[-1, 2], [3, 4]]
>>> print(wcnf.wght)
[1, 1]

class pysat.formula.CNFPlus(*args, **kwargs)
CNF formulas augmented with native cardinality constraints.

This class inherits most of the functionality of the CNF class. The only difference between the two is that CNFPlus
supports native cardinality constraints of MiniCard.

The parser of input DIMACS files of CNFPlus assumes the syntax of AtMostK and AtLeastK constraints defined
in the description of MiniCard:

c Example: Two cardinality constraints followed by a clause
p cnf+ 7 3
1 -2 3 5 -7 <= 3
4 5 6 -7 >= 2
3 5 7 0

Additionally, CNFPlus support pseudo-Boolean constraints, i.e. weighted linear constraints by extending the
above format. Basically, a pseudo-Boolean constraint needs to specify all the summands as weight*literal
with the entire constraint being prepended with character w as follows:

c Example: One cardinality constraint and one PB constraint followed by a clause
p cnf+ 7 3
1 -2 3 5 -7 <= 3
w 1*4 2*5 1*6 3*-7 >= 2
3 5 7 0

Each AtLeastK constraint is translated into an AtMostK constraint in the standard way:
∑︀𝑛

𝑖=1 𝑥𝑖 ≥ 𝑘 ↔∑︀𝑛
𝑖=1 ¬𝑥𝑖 ≤ (𝑛−𝑘). Internally, AtMostK constraints are stored in variable atmosts, each being a pair (lits,

k), where lits is a list of literals in the sum and k is the upper bound.

Example:

>>> from pysat.formula import CNFPlus
>>> cnf = CNFPlus(from_string='p cnf+ 7 3\n1 -2 3 5 -7 <= 3\n4 5 6 -7 >= 2\n 3 5 7␣
→˓0\n')
>>> print(cnf.clauses)
[[3, 5, 7]]
>>> print(cnf.atmosts)
[[[1, -2, 3, 5, -7], 3], [[-4, -5, -6, 7], 2]]
>>> print(cnf.nv)
7

For details on the functionality, see CNF.

1.1. Core PySAT modules 21

https://github.com/liffiton/minicard
https://github.com/liffiton/minicard

PySAT Documentation, Release 1.8.dev17

append(clause, is_atmost=False)
Add a single clause or a single AtMostK constraint to CNF+ formula. This method additionally updates
the number of variables, i.e. variable self.nv, used in the formula.

If the clause is an AtMostK constraint, this should be set with the use of the additional default argument
is_atmost, which is set to False by default.

Parameters

• clause (list(int)) – a new clause to add.

• is_atmost (bool) – if True, the clause is AtMostK.

>>> from pysat.formula import CNFPlus
>>> cnf = CNFPlus()
>>> cnf.append([-3, 4])
>>> cnf.append([[1, 2, 3], 1], is_atmost=True)
>>> print(cnf.clauses)
[[-3, 4]]
>>> print(cnf.atmosts)
[[1, 2, 3], 1]

copy()

This method can be used for creating a copy of a CNFPlus object. It creates another object of the CNFPlus
class, call the copy function of CNF class and makes use of the deepcopy functionality to copy the atmost
constraints.

Returns an object of class CNFPlus.

Example:

>>> cnf1 = CNFPlus()
>>> cnf1.extend([[-1, 2], [1]])
>>> cnf1.append([[1, 2], 1], is_atmost=True)
>>> cnf2 = cnf1.copy()
>>> print(cnf2.clauses)
[[-1, 2], [1]]
>>> print(cnf2.nv)
2
>>> print(cnf2.atmosts)
[[[1, 2], 1]]

extend(formula)
Extend the CNF+ formula with more clauses and/or AtMostK constraints. The additional clauses and
AtMostK constraints to add should be given in the form of CNFPlus. Alternatively, a list of clauses can
be added too. For every single clause and AtMostK constraint in the input formula, method append() is
invoked.

Parameters formula (CNFPlus) – new constraints to add.

Example:

>>> from pysat.formula import CNFPlus
>>> cnf1 = CNFPlus()
>>> cnf1.extend([[-3, 4], [5, 6], [[1, 2, 3], 1]])
>>> print(cnf1.clauses)
[[-3, 4], [5, 6]]

(continues on next page)

22 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> print(cnf1.atmosts)
[[[1, 2, 3], 1]]
>>> cnf2 = CNFPlus()
>>> cnf2.extend(cnf1)
>>> print(cnf1.clauses)
[[-3, 4], [5, 6]]
>>> print(cnf1.atmosts)
[[[1, 2, 3], 1]]

from_fp(file_pointer, comment_lead=['c'])
Read a CNF+ formula from a file pointer. A file pointer should be specified as an argument. The only
default argument is comment_lead, which can be used for parsing specific comment lines.

Parameters

• file_pointer (file pointer) – a file pointer to read the formula from.

• comment_lead (list(str)) – a list of characters leading comment lines

Usage example:

>>> with open('some-file.cnf+', 'r') as fp:
... cnf1 = CNFPlus()
... cnf1.from_fp(fp)
>>>
>>> with open('another-file.cnf+', 'r') as fp:
... cnf2 = CNFPlus(from_fp=fp)

to_alien(file_pointer, format='opb', comments=None)
The method can be used to dump a CNF+ formula into a file pointer in an alien file format, which at this
point can either be LP, OPB, or SMT. The file pointer is expected as an argument. Additionally, the target
format ‘lp’, ‘opb’, or ‘smt’ may be specified (equal to ‘opb’ by default). Finally, supplementary comment
lines can be specified in the comments parameter.

Note: SMT-LIB2 does not directly support PB constraints. As a result, native cardinality constraints of
CNF+ cannot be translated to SMT-LIB2 unless an explicit cardinality encoding is applied. You may want
to use Z3’s API instead (see its PB interface).

Parameters

• file_pointer (file pointer) – a file pointer where to store the formula.

• format (str) – alien file format to use

• comments (list(str)) – additional comments to put in the file.

Example:

>>> from pysat.formula import CNFPlus
>>> cnf = CNFPlus()
...
>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.lp', 'w') as fp:
... cnf.to_alien(fp, format='lp') # writing to the file pointer

1.1. Core PySAT modules 23

http://smtlib.cs.uiowa.edu/language.shtml

PySAT Documentation, Release 1.8.dev17

to_dimacs()

Return the current state of the object in extended DIMACS format.

For example, if ‘some-file.cnf’ contains:

c Example
p cnf+ 7 3
1 -2 3 5 -7 <= 3
4 5 6 -7 >= 2
3 5 7 0

Then you can obtain the DIMACS with:

>>> from pysat.formula import CNFPlus
>>> cnf = CNFPlus(from_file='some-file.cnf')
>>> print(cnf.to_dimacs())
c Example
p cnf+ 7 3
3 5 7 0
1 -2 3 5 -7 <= 3
-4 -5 -6 7 <= 2

to_fp(file_pointer, comments=None)
The method can be used to save a CNF+ formula into a file pointer. The file pointer is expected as an
argument. Additionally, supplementary comment lines can be specified in the comments parameter.

Parameters

• file_pointer (file pointer) – a file pointer where to store the formula.

• comments (list(str)) – additional comments to put in the file.

Example:

>>> from pysat.formula import CNFPlus
>>> cnf = CNFPlus()
...
>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.cnf+', 'w') as fp:
... cnf.to_fp(fp) # writing to the file pointer

weighted()

This method creates a weighted copy of the internal formula. As a result, an object of class WCNFPlus is
returned. Every clause of the CNFPlus formula is soft in the new WCNFPlus formula and its weight is
equal to 1. The set of hard clauses of the new formula is empty. The set of cardinality constraints remains
unchanged.

Returns an object of class WCNFPlus.

Example:

>>> from pysat.formula import CNFPlus
>>> cnf = CNFPlus()
>>> cnf.append([-1, 2])
>>> cnf.append([3, 4])
>>> cnf.append([[1, 2], 1], is_atmost=True)
>>>

(continues on next page)

24 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> wcnf = cnf.weighted()
>>> print(wcnf.hard)
[]
>>> print(wcnf.soft)
[[-1, 2], [3, 4]]
>>> print(wcnf.wght)
[1, 1]
>>> print(wcnf.atms)
[[[1, 2], 1]]

class pysat.formula.Equals(*args, **kwargs)
Equivalence. Given a list of operands (subformulas) 𝑓𝑖, 𝑖 ∈ {1, . . . , 𝑛}, 𝑛 ∈ N, it creates a formula 𝑓1 ↔ 𝑓2 ↔
. . .↔ 𝑓𝑛. The list of operands of size at least 2 should be passed as arguments to the constructor.

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> equiv = Equals(x, y, z)

If an additional Boolean keyword argument merge is provided set to True, the toolkit will try to flatten
the current Equals formula merging its equivalence sub-operands into the list of operands. For example, if
Equals(Equals(x, y), z, merge=True) is called, a new Formula object will be created with two operands:
Equals(x, y) and z, followed by merging x and y into the list of root-level Equals. This will result in a for-
mula Equals(x, y, z). Merging sub-operands is enabled by default if bitwise operations are used to create
Equals formulas.

Example:

>>> from pysat.formula import *
>>> a1 = Equals(Equals(Atom('x'), Atom('y')), Atom('z'))
>>> a2 = Equals(Equals(Atom('x'), Atom('y')), Atom('z'), merge=True)
>>> a3 = Atom('x') == Atom('y') == Atom('z')
>>>
>>> print(a1)
(x @ y) @ z
>>> print(a2)
x @ y @ z
>>> print(a3)
x @ y @ z
>>>
>>> id(a1) == id(a2)
False
>>>
>>> id(a2) == id(a3)
True # formulas a2 and a3 refer to the same object

Note: If there are two formulas representing the same fact with and without merging enabled, they technically
sit in two distinct objects. Although PySAT tries to avoid it, clausification of these two formulas may result in
unique (different) auxiliary variables assigned to such two formulas.

simplified(assumptions=[])

1.1. Core PySAT modules 25

PySAT Documentation, Release 1.8.dev17

Given a list of assumption literals, recursively simplifies the subformulas and creates a new formula.

Parameters assumptions (list(Formula)) – atomic assumptions

Return type Formula

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> a = x @ y @ z
>>>
>>> print(a.simplified(assumptions=[y]))
x & z # x and z must also be True
>>> print(a.simplified(assumptions=[~y]))
~x & ~z # x and z must also be False

class pysat.formula.Formula(*args, **kwargs)
Abstract formula class. At the same time, the class is a factory for its children and can be used this way although it
is recommended to create objects of the children classes directly. In particular, its children classes include Atom
(atomic formulas - variables and constants), Neg (negations), And (conjunctions), Or (disjunctions), Implies
(implications), Equals (equalities), XOr (exclusive disjunctions), and ITE (if-then-else operations).

Due to the need to clausify formulas, an object of any subclass of Formula is meant to be represented in memory
by a single copy. This is achieved by storing a dictionary of all the known formulas attached to a given context.
Thus, once a particular context is activated, its dictionary will make sure each formula variable refers to a single
representation of the formula object it aims to refer. When it comes to clausifying this formula, the formula is
encoded exactly once, despite it may be potentially used multiple times as part of one of more complex formulas.

Example:

>>> from pysat.formula import *
>>>
>>> x1, x2 = Atom('x'), Atom('x')
>>> id(x1) == id(x2)
True # x1 and x2 refer to the same atom
>>> id(x1 & Atom('y')) == id(Atom('y') & x2)
True # it holds if constructing complex formulas with them as subformulas

The class supports multi-context operation. A user may have formulas created and clausified in different context.
They can also switch from one context to another and/or cleanup the instances known in some or all contexts.

Example:

>>> from pysat.formula import *
>>> f1 = Or(And(...)) # arbitrary formula
>>> # by default, the context is set to 'default'
>>> # another context can be created like this:
>>> Formula.set_context(context='some-other-context')
>>> # the new context knows nothing about formula f1
>>> # ...
>>> # cleaning up context 'some-other-context'
>>> # this deletes all the formulas known in this context
>>> Formula.cleanup(context='some-other-context')
>>> # switching back to 'default'
>>> Formula.set_context(context='default')

26 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

A user may also want to disable duplicate blocking, which can be achieved by setting the context to None.

Boolean constants False and True are represented by the atomic “formulas” Atom(False) and Atom(True),
respectively. There are two constants storing these values: PYSAT_FALSE and PYSAT_TRUE.

>>> PYSAT_FALSE, PYSAT_TRUE
(Atom(False), Atom(True))

static attach_vpool(vpool, context='default')
Attach an external IDPool to be associated with a given context. This is useful when a user has an already
created IDPool object and wants to reuse it when clausifying their Formula objects.

Parameters

• vpool (IDPool) – an external variable manager

• context (hashable) – target context to be the user of the vpool

clausify()

This method applies Tseitin transformation to the formula. Recursively gives all the formulas Boolean
names accordingly and uses them in the current logic connective following its semantics. As a result, each
subformula stores its clausal representation independently of other subformulas (and independently of the
root formula).

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> a = (x @ y) | z
>>>
>>> a.clausify() # clausifying formula a
>>>
>>> # let's what clauses represent the root logic connective
>>> a.clauses
[[3, 4]] # 4 corresponds to z while 3 represents the equality x @ y

static cleanup(context=None)
Clean up either a given context (if specified as different from None) or all contexts (otherwise); afterwards,
start the “default” context from scratch.

A context is cleaned by destroying all the associated Formula objects and all the corresponding variable
managers. This may be useful if a user wants to start encoding their problem from scratch.

Note: Once cleaning of a context is done, the objects referring to the context’s formulas must not be used.
At this point, they are orphaned and can’t get re-clausified.

Parameters context (None or hashable) – target context

static export_vpool(active=True, context='default')
Opposite to attach_vpool(), this method returns a variable managed attached to a given context, which
may be useful for external use.

Parameters

• active (bool) – export the currently active context

• context (hashable) – context using the vpool we are interested in (if active is False)

1.1. Core PySAT modules 27

PySAT Documentation, Release 1.8.dev17

Return type IDPool

static formulas(lits, atoms_only=True)
Given a list of integer literal identifiers, this method returns a list of formulas corresponding to these identi-
fiers. Basically, the method can be seen as mapping auxiliary variables naming formulas to the correspond-
ing formulas they name.

If the argument atoms_only is set to True only, the method will return a subset of formulas, including only
atomic formulas (literals). Otherwise, any formula whose name occurs in the input list will be included in
the result.

Parameters

• lits (iterable) – input list of literals

• atoms_only (bool) – include all known formulas or atomic ones only

Return type list(Formula)

Example:

>>> from pysat.formula import *
>>> from pysat.solvers import Solver
>>>
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> a = (x @ y) ^ z
>>>
>>> with Solver(bootstrap_with=a) as solver:
... for model in solver.enum_models():
... # using method formulas to map the model back to atoms
... print(Formula.formulas(model, atoms_only=True))
...
[Neg(Atom('x')), Neg(Atom('y')), Neg(Atom('z'))]
[Neg(Atom('x')), Atom('y'), Atom('z')]
[Atom('x'), Atom('y'), Neg(Atom('z'))]
[Atom('x'), Neg(Atom('y')), Atom('z')]

static literals(forms)
Extract formula names for a given list of formulas and return them as a list of integer identifiers. Essentially,
the method is the opposite to formulas().

Parameters forms (iterable) – list of formulas to map

Return type list(int)

Example:

>>> from pysat.solvers import Solver
>>> from pysat.formula import *
>>>
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> a = (x @ y) ^ z
>>>
>>> # applying Tseitin transformation to formula a
>>> a.clausify()
>>>
>>> # checking what facts the internal vpool knows
>>> print(Formula.export_vpool().id2obj)

(continues on next page)

28 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

{1: Atom('x'), 2: Atom('y'), 3: Equals[Atom('x'), Atom('y')], 4: Atom('z')}
>>>
>>> # now, mapping two atoms to their integer id representations
>>> Formula.literals(forms=[Atom('x'), ~Atom('z')])
[1, -4]

satisfied(model)
Given a list of atomic formulas, this method checks whether the current formula is satisfied by assigning
these atoms. The method returns True if the formula gets satisfied, False if it is falsified, and None if the
answer is unknown.

Parameters model (list(Formula)) – list of atomic formulas

Return type bool or None

Example:

>>> from pysat.formula import *
>>>
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> a = (x @ y) | z
>>>
>>> a.satisfied(model=[z])
True
>>> a.satisfied(model=[~z])
>>> # None, as it is not enough to set ~z to determine satisfiability of a

static set_context(context='default')
Set the current context of interest. If set to None, no context will be assumed and duplicate checking will
be disabled as a result.

Parameters context (hashable) – new active context

simplified(assumptions=[])
Given a list of assumption atomic formula literals, this method recursively assigns these atoms to the cor-
responding values followed by formula simplification. As a result, a new formula object is returned.

Parameters assumptions (list) – atomic formula objects

Return type Formula

Example:

>>> from pysat.formula import *
>>>
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> a = (x @ y) | z # a formula over 3 variables: x, y, and z
>>>
>>> a.simplified(assumptions=[z])
Atom(True)
>>>
>>> a.simplified(assumptions=[~z])
Equals[Atom('x'), Atom('y')]
>>>
>>> b = a ^ Atom('p') # a more complex formula
>>>

(continues on next page)

1.1. Core PySAT modules 29

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> b.simplified(assumptions=[x, ~Atom('p')])
Or[Atom('y'), Atom('z')]

exception pysat.formula.FormulaError

This exception is raised when an formula-related issue occurs.

class pysat.formula.FormulaType(value)
This class represents a C-like enum type for choosing the formula type to use. The values denoting all the formula
types are as follows:

ATOM = 0
AND = 1
OR = 2
NEG = 3
IMPL = 4
EQ = 5
XOR = 6
ITE = 7

class pysat.formula.IDPool(start_from=1, occupied=[])
A simple manager of variable IDs. It can be used as a pool of integers assigning an ID to any object. Identifiers
are to start from 1 by default. The list of occupied intervals is empty be default. If necessary the top variable ID
can be accessed directly using the top variable.

Parameters

• start_from (int) – the smallest ID to assign.

• occupied (list(list(int))) – a list of occupied intervals.

id(obj=None)
The method is to be used to assign an integer variable ID for a given new object. If the object already has
an ID, no new ID is created and the old one is returned instead.

An object can be anything. In some cases it is convenient to use string variable names. Note that if the
object is not provided, the method will return a new id unassigned to any object.

Parameters obj – an object to assign an ID to.

Return type int.

Example:

>>> from pysat.formula import IDPool
>>> vpool = IDPool(occupied=[[12, 18], [3, 10]])
>>>
>>> # creating 5 unique variables for the following strings
>>> for i in range(5):
... print(vpool.id('v{0}'.format(i + 1)))
1
2
11
19
20

In some cases, it makes sense to create an external function for accessing IDPool, e.g.:

30 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

>>> # continuing the previous example
>>> var = lambda i: vpool.id('var{0}'.format(i))
>>> var(5)
20
>>> var('hello_world!')
21

obj(vid)
The method can be used to map back a given variable identifier to the original object labeled by the identifier.

Parameters vid (int) – variable identifier.

Returns an object corresponding to the given identifier.

Example:

>>> vpool.obj(21)
'hello_world!'

occupy(start, stop)
Mark a given interval as occupied so that the manager could skip the values from start to stop (inclusive).

Parameters

• start (int) – beginning of the interval.

• stop (int) – end of the interval.

restart(start_from=1, occupied=[])
Restart the manager from scratch. The arguments replicate those of the constructor of IDPool.

class pysat.formula.ITE(*args, **kwargs)
If-then-else operator. Given three operands (subformulas) 𝑥, 𝑦, and 𝑧, it creates a formula (𝑥→ 𝑦)∧ (¬𝑥→ 𝑧).
The operands should be passed as arguments to the constructor.

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> ite = ITE(x, y, z)
>>>
>>> print(ite)
>>> (x >> y) & (~x >> z)

simplified(assumptions=[])
Given a list of assumption literals, recursively simplifies the subformulas and creates a new formula.

Parameters assumptions (list(Formula)) – atomic assumptions

Return type Formula

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> ite = ITE(x, y, z)
>>>
>>> print(ite.simplified(assumptions=[y]))

(continues on next page)

1.1. Core PySAT modules 31

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

x | z
>>> print(ite.simplified(assumptions=[~y]))
~x & z

class pysat.formula.Implies(*args, **kwargs)
Implication. Given two operands 𝑓1 and 𝑓2, it creates a formula 𝑓1 → 𝑓2. The operands must be passed to the
constructors either as two arguments or two keyword arguments left and right.

Example:

>>> from pysat.formula import *
>>> x, y = Atom('x'), Atom('y')
>>> a = Implies(x, y)
>>> print(a)
x >> y

simplified(assumptions=[])
Given a list of assumption literals, recursively simplifies the left and right subformulas and then creates and
returns a new formula with these simplified subformulas.

Parameters assumptions (list(Formula)) – atomic assumptions

Return type Formula

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y')
>>> a = x >> y
>>>
>>> print(a.simplified(assumptions=[y]))
T
>>> print(a.simplified(assumptions=[~y]))
~x

class pysat.formula.Neg(*args, **kwargs)
Negation. Given a single operand (subformula) 𝑓 , it creates a formula ¬𝑓 . The operand must be passed as an
argument to the constructor.

Example:

>>> from pysat.formula import *
>>> x = Atom('x')
>>> n1 = Neg(x)
>>> n2 = Neg(subformula=x)
>>> print(n1, n2)
~x, ~x
>>> n3 = ~n1
>>> print(n3)
x

simplified(assumptions=[])
Given a list of assumption literals, recursively simplifies the subformula and then creates and returns a new
formula with this simplified subformula.

Parameters assumptions (list(Formula)) – atomic assumptions

32 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

Return type Formula

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> a = x & y | z
>>> b = ~a
>>>
>>> print(b.simplified(assumptions=[y]))
~(x | z)
>>> print(b.simplified(assumptions=[~y]))
~z

class pysat.formula.Or(*args, **kwargs)
Disjunction. Given a list of operands (subformulas) 𝑓𝑖, 𝑖 ∈ {1, . . . , 𝑛}, 𝑛 ∈ N, it creates a formula

⋁︀𝑛
𝑖=1 𝑓𝑖. The

list of operands of size at least 1 should be passed as arguments to the constructor.

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> conj = Or(x, y, z)

If an additional Boolean keyword argument merge is provided set to True, the toolkit will try to flatten the
current Or formula merging its conjuctive sub-operands into the list of operands. For example, if Or(Or(x,
y), z, merge=True) is called, a new Formula object will be created with two operands: Or(x, y) and z,
followed by merging x and y into the list of root-level Or. This will result in a formula Or(x, y, z). Merging
sub-operands is enabled by default if bitwise operations are used to create Or formulas.

Example:

>>> from pysat.formula import *
>>> a1 = Or(Or(Atom('x'), Atom('y')), Atom('z'))
>>> a2 = Or(Or(Atom('x'), Atom('y')), Atom('z'), merge=True)
>>> a3 = Atom('x') | Atom('y') | Atom('z')
>>>
>>> repr(a1)
"Or[Or[Atom('x'), Atom('y')], Atom('z')]"
>>> repr(a2)
"Or[Atom('x'), Atom('y'), Atom('z')]"
>>> repr(a2)
"Or[Atom('x'), Atom('y'), Atom('z')]"
>>>
>>> id(a1) == id(a2)
False
>>>
>>> id(a2) == id(a3)
True # formulas a2 and a3 refer to the same object

Note: If there are two formulas representing the same fact with and without merging enabled, they technically
sit in two distinct objects. Although PySAT tries to avoid it, clausification of these two formulas may result in
unique (different) auxiliary variables assigned to such two formulas.

1.1. Core PySAT modules 33

PySAT Documentation, Release 1.8.dev17

simplified(assumptions=[])
Given a list of assumption literals, recursively simplifies the subformulas and creates a new formula.

Parameters assumptions (list(Formula)) – atomic assumptions

Return type Formula

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> a = x | y | z
>>>
>>> print(a.simplified(assumptions=[y]))
T # True
>>> print(a.simplified(assumptions=[~y]))
x | z

class pysat.formula.WCNF(from_file=None, from_fp=None, from_string=None, comment_lead=['c'])
Class for manipulating partial (weighted) CNF formulas. It can be used for creating formulas, reading them from
a file, or writing them to a file. The comment_lead parameter can be helpful when one needs to parse specific
comment lines starting not with character c but with another character or a string.

Parameters

• from_file (str) – a DIMACS CNF filename to read from

• from_fp (file_pointer) – a file pointer to read from

• from_string (str) – a string storing a CNF formula

• comment_lead (list(str)) – a list of characters leading comment lines

append(clause, weight=None)
Add one more clause to WCNF formula. This method additionally updates the number of variables, i.e.
variable self.nv, used in the formula.

The clause can be hard or soft depending on the weight argument. If no weight is set, the clause is
considered to be hard.

Parameters

• clause (list(int)) – a new clause to add.

• weight (integer or None) – integer weight of the clause.

>>> from pysat.formula import WCNF
>>> cnf = WCNF()
>>> cnf.append([-1, 2])
>>> cnf.append([1], weight=10)
>>> cnf.append([-2], weight=20)
>>> print(cnf.hard)
[[-1, 2]]
>>> print(cnf.soft)
[[1], [-2]]
>>> print(cnf.wght)
[10, 20]

34 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

copy()

This method can be used for creating a copy of a WCNF object. It creates another object of the WCNF class
and makes use of the deepcopy functionality to copy both hard and soft clauses.

Returns an object of class WCNF.

Example:

>>> cnf1 = WCNF()
>>> cnf1.append([-1, 2])
>>> cnf1.append([1], weight=10)
>>>
>>> cnf2 = cnf1.copy()
>>> print(cnf2.hard)
[[-1, 2]]
>>> print(cnf2.soft)
[[1]]
>>> print(cnf2.wght)
[10]
>>> print(cnf2.nv)
2

extend(clauses, weights=None)
Add several clauses to WCNF formula. The clauses should be given in the form of list. For every clause in
the list, method append() is invoked.

The clauses can be hard or soft depending on the weights argument. If no weights are set, the clauses are
considered to be hard.

Parameters

• clauses (list(list(int))) – a list of new clauses to add.

• weights (list(int)) – a list of integer weights.

Example:

>>> from pysat.formula import WCNF
>>> cnf = WCNF()
>>> cnf.extend([[-3, 4], [5, 6]])
>>> cnf.extend([[3], [-4], [-5], [-6]], weights=[1, 5, 3, 4])
>>> print(cnf.hard)
[[-3, 4], [5, 6]]
>>> print(cnf.soft)
[[3], [-4], [-5], [-6]]
>>> print(cnf.wght)
[1, 5, 3, 4]

from_file(fname, comment_lead=['c'], compressed_with='use_ext')
Read a WCNF formula from a file in the DIMACS format. A file name is expected as an argument. A
default argument is comment_lead for parsing comment lines. A given file can be compressed by either
gzip, bzip2, or lzma.

Parameters

• fname (str) – name of a file to parse.

• comment_lead (list(str)) – a list of characters leading comment lines

1.1. Core PySAT modules 35

PySAT Documentation, Release 1.8.dev17

• compressed_with (str) – file compression algorithm

Note that the compressed_with parameter can be None (i.e. the file is uncompressed), 'gzip', 'bzip2',
'lzma', or 'use_ext'. The latter value indicates that compression type should be automatically deter-
mined based on the file extension. Using 'lzma' in Python 2 requires the backports.lzma package to
be additionally installed.

Usage example:

>>> from pysat.formula import WCNF
>>> cnf1 = WCNF()
>>> cnf1.from_file('some-file.wcnf.bz2', compressed_with='bzip2')
>>>
>>> cnf2 = WCNF(from_file='another-file.wcnf')

from_fp(file_pointer, comment_lead=['c'])
Read a WCNF formula from a file pointer. A file pointer should be specified as an argument. The only
default argument is comment_lead, which can be used for parsing specific comment lines.

Parameters

• file_pointer (file pointer) – a file pointer to read the formula from.

• comment_lead (list(str)) – a list of characters leading comment lines

Usage example:

>>> with open('some-file.cnf', 'r') as fp:
... cnf1 = WCNF()
... cnf1.from_fp(fp)
>>>
>>> with open('another-file.cnf', 'r') as fp:
... cnf2 = WCNF(from_fp=fp)

from_string(string, comment_lead=['c'])
Read a WCNF formula from a string. The string should be specified as an argument and should be in
the DIMACS CNF format. The only default argument is comment_lead, which can be used for parsing
specific comment lines.

Parameters

• string (str) – a string containing the formula in DIMACS.

• comment_lead (list(str)) – a list of characters leading comment lines

Example:

>>> from pysat.formula import WCNF
>>> cnf1 = WCNF()
>>> cnf1.from_string('p wcnf 2 2 2\n 2 -1 2 0\n1 1 -2 0')
>>> print(cnf1.hard)
[[-1, 2]]
>>> print(cnf1.soft)
[[1, 2]]
>>>
>>> cnf2 = WCNF(from_string='p wcnf 3 3 2\n2 -1 2 0\n2 -2 3 0\n1 -3 0\n')
>>> print(cnf2.hard)
[[-1, 2], [-2, 3]]

(continues on next page)

36 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> print(cnf2.soft)
[[-3]]
>>> print(cnf2.nv)
3

normalize_negatives(negatives)
Iterate over all soft clauses with negative weights and add their negation either as a hard clause or a soft
one.

Parameters negatives (list(list(int))) – soft clauses with their negative weights.

to_alien(file_pointer, format='opb', comments=None)
The method can be used to dump a WCNF formula into a file pointer in an alien file format, which at this
point can either be LP, OPB, or SMT. The file pointer is expected as an argument. Additionally, the target
format ‘lp’, ‘opb’, or ‘smt’ may be specified (equal to ‘opb’ by default). Finally, supplementary comment
lines can be specified in the comments parameter.

Parameters

• file_pointer (file pointer) – a file pointer where to store the formula.

• format (str) – alien file format to use

• comments (list(str)) – additional comments to put in the file.

Example:

>>> from pysat.formula import WCNF
>>> cnf = WCNF()
...
>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.lp', 'w') as fp:
... cnf.to_alien(fp, format='lp') # writing to the file pointer

to_dimacs()

Return the current state of the object in extended DIMACS format.

For example, if ‘some-file.cnf’ contains:

c Example
p wcnf 2 3 10
1 -1 0
2 -2 0
10 1 2 0

Then you can obtain the DIMACS with:

>>> from pysat.formula import WCNF
>>> cnf = WCNF(from_file='some-file.cnf')
>>> print(cnf.to_dimacs())
c Example
p wcnf 2 3 10
10 1 2 0
1 -1 0
2 -2 0

1.1. Core PySAT modules 37

PySAT Documentation, Release 1.8.dev17

to_file(fname, comments=None, compress_with='use_ext')
The method is for saving a WCNF formula into a file in the DIMACS CNF format. A file name is expected
as an argument. Additionally, supplementary comment lines can be specified in the comments parameter.
Also, a file can be compressed using either gzip, bzip2, or lzma (xz).

Parameters

• fname (str) – a file name where to store the formula.

• comments (list(str)) – additional comments to put in the file.

• compress_with (str) – file compression algorithm

Note that the compress_with parameter can be None (i.e. the file is uncompressed), 'gzip', 'bzip2',
'lzma', or 'use_ext'. The latter value indicates that compression type should be automatically deter-
mined based on the file extension. Using 'lzma' in Python 2 requires the backports.lzma package to
be additionally installed.

Example:

>>> from pysat.formula import WCNF
>>> wcnf = WCNF()
...
>>> # the formula is filled with a bunch of clauses
>>> wcnf.to_file('some-file-name.wcnf') # writing to a file

to_fp(file_pointer, comments=None)
The method can be used to save a WCNF formula into a file pointer. The file pointer is expected as an
argument. Additionally, supplementary comment lines can be specified in the comments parameter.

Parameters

• file_pointer (file pointer) – a file pointer where to store the formula.

• comments (list(str)) – additional comments to put in the file.

Example:

>>> from pysat.formula import WCNF
>>> wcnf = WCNF()
...
>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.wcnf', 'w') as fp:
... wcnf.to_fp(fp) # writing to the file pointer

unweighted()

This method creates a plain (unweighted) copy of the internal formula. As a result, an object of class CNF
is returned. Every clause (both hard or soft) of the WCNF formula is copied to the clauses variable of the
resulting plain formula, i.e. all weights are discarded.

Returns an object of class CNF.

Example:

>>> from pysat.formula import WCNF
>>> wcnf = WCNF()
>>> wcnf.extend([[-3, 4], [5, 6]])
>>> wcnf.extend([[3], [-4], [-5], [-6]], weights=[1, 5, 3, 4])
>>>

(continues on next page)

38 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> cnf = wcnf.unweighted()
>>> print(cnf.clauses)
[[-3, 4], [5, 6], [3], [-4], [-5], [-6]]

class pysat.formula.WCNFPlus(from_file=None, from_fp=None, from_string=None, comment_lead=['c'])
WCNF formulas augmented with native cardinality constraints.

This class inherits most of the functionality of the WCNF class. The only difference between the two is that
WCNFPlus supports native cardinality constraints of MiniCard.

The parser of input DIMACS files of WCNFPlus assumes the syntax of AtMostK and AtLeastK constraints fol-
lowing the one defined for CNFPlus in the description of MiniCard:

c Example: Two (hard) cardinality constraints followed by a soft clause
p wcnf+ 7 3 10
10 1 -2 3 5 -7 <= 3
10 4 5 6 -7 >= 2
5 3 5 7 0

Additionally, WCNFPlus support pseudo-Boolean constraints, i.e. weighted linear constraints by extending the
above format. Basically, a pseudo-Boolean constraint needs to specify all the summands as weight*literal
with the entire constraint being prepended with character w as follows:

c Example: One cardinality constraint and one PB constraint followed by a soft␣
→˓clause
p wcnf+ 7 3 10
10 1 -2 3 5 -7 <= 3
10 w 1*4 2*5 1*6 3*-7 >= 2
5 3 5 7 0

Note that every cardinality constraint is assumed to be hard, i.e. soft cardinality constraints are currently not
supported.

Each AtLeastK constraint is translated into an AtMostK constraint in the standard way:
∑︀𝑛

𝑖=1 𝑥𝑖 ≥ 𝑘 ↔∑︀𝑛
𝑖=1 ¬𝑥𝑖 ≤ (𝑛 − 𝑘). Internally, AtMostK constraints are stored in variable atms, each being a pair (lits,

k), where lits is a list of literals in the sum and k is the upper bound.

Example:

>>> from pysat.formula import WCNFPlus
>>> cnf = WCNFPlus(from_string='p wcnf+ 7 3 10\n10 1 -2 3 5 -7 <= 3\n10 4 5 6 -7 >=␣
→˓2\n5 3 5 7 0\n')
>>> print(cnf.soft)
[[3, 5, 7]]
>>> print(cnf.wght)
[5]
>>> print(cnf.hard)
[]
>>> print(cnf.atms)
[[[1, -2, 3, 5, -7], 3], [[-4, -5, -6, 7], 2]]
>>> print(cnf.nv)
7

For details on the functionality, see WCNF.

1.1. Core PySAT modules 39

https://github.com/liffiton/minicard
https://github.com/liffiton/minicard

PySAT Documentation, Release 1.8.dev17

append(clause, weight=None, is_atmost=False)
Add a single clause or a single AtMostK constraint to WCNF+ formula. This method additionally updates
the number of variables, i.e. variable self.nv, used in the formula.

If the clause is an AtMostK constraint, this should be set with the use of the additional default argument
is_atmost, which is set to False by default.

If is_atmost is set to False, the clause can be either hard or soft depending on the weight argument. If
no weight is specified, the clause is considered hard. Otherwise, the clause is soft.

Parameters

• clause (list(int)) – a new clause to add.

• weight (integer or None) – an integer weight of the clause.

• is_atmost (bool) – if True, the clause is AtMostK.

>>> from pysat.formula import WCNFPlus
>>> cnf = WCNFPlus()
>>> cnf.append([-3, 4])
>>> cnf.append([[1, 2, 3], 1], is_atmost=True)
>>> cnf.append([-1, -2], weight=35)
>>> print(cnf.hard)
[[-3, 4]]
>>> print(cnf.atms)
[[1, 2, 3], 1]
>>> print(cnf.soft)
[[-1, -2]]
>>> print(cnf.wght)
[35]

copy()

This method can be used for creating a copy of a WCNFPlus object. It creates another object of the
WCNFPlus class, call the copy function of WCNF class and makes use of the deepcopy functionality to
copy the atmost constraints.

Returns an object of class WCNFPlus.

Example:

>>> cnf1 = WCNFPlus()
>>> cnf1.append([-1, 2])
>>> cnf1.append([1], weight=10)
>>> cnf1.append([[1, 2], 1], is_atmost=True)
>>> cnf2 = cnf1.copy()
>>> print(cnf2.hard)
[[-1, 2]]
>>> print(cnf2.soft)
[[1]]
>>> print(cnf2.wght)
[10]
>>> print(cnf2.nv)
2
>> print(cnf2.atms)
[[[1, 2], 1]]

40 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

from_fp(file_pointer, comment_lead=['c'])
Read a WCNF+ formula from a file pointer. A file pointer should be specified as an argument. The only
default argument is comment_lead, which can be used for parsing specific comment lines.

Parameters

• file_pointer (file pointer) – a file pointer to read the formula from.

• comment_lead (list(str)) – a list of characters leading comment lines

Usage example:

>>> with open('some-file.wcnf+', 'r') as fp:
... cnf1 = WCNFPlus()
... cnf1.from_fp(fp)
>>>
>>> with open('another-file.wcnf+', 'r') as fp:
... cnf2 = WCNFPlus(from_fp=fp)

to_alien(file_pointer, format='opb', comments=None)
The method can be used to dump a WCNF+ formula into a file pointer in an alien file format, which at this
point can either be LP, OPB, or SMT. The file pointer is expected as an argument. Additionally, the target
format ‘lp’, ‘opb’, or ‘smt’ may be specified (equal to ‘opb’ by default). Finally, supplementary comment
lines can be specified in the comments parameter.

Note: SMT-LIB2 does not directly support PB constraints. As a result, native cardinality constraints of
CNF+ cannot be translated to SMT-LIB2 unless an explicit cardinality encoding is applied. You may want
to use Z3’s API instead (see its PB interface).

Parameters

• file_pointer (file pointer) – a file pointer where to store the formula.

• format (str) – alien file format to use

• comments (list(str)) – additional comments to put in the file.

Example:

>>> from pysat.formula import WCNFPlus
>>> cnf = WCNFPlus()
...
>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.lp', 'w') as fp:
... cnf.to_alien(fp, format='lp') # writing to the file pointer

to_dimacs()

Return the current state of the object in extended DIMACS format.

For example, if ‘some-file.cnf’ contains:

c Example
p wcnf+ 7 3 10
10 1 -2 3 5 -7 <= 3
10 4 5 6 -7 >= 2
5 3 5 7 0

1.1. Core PySAT modules 41

http://smtlib.cs.uiowa.edu/language.shtml

PySAT Documentation, Release 1.8.dev17

Then you can obtain the DIMACS with:

>>> from pysat.formula import WCNFPlus
>>> cnf = WCNFPlus(from_file='some-file.cnf')
>>> print(cnf.to_dimacs())
c Example
p wcnf+ 7 4 10
10 -1 3 5 0
5 3 5 7 0
10 1 -2 3 5 -7 <= 3
10 -4 -5 -6 7 <= 2

to_fp(file_pointer, comments=None)
The method can be used to save a WCNF+ formula into a file pointer. The file pointer is expected as an
argument. Additionally, supplementary comment lines can be specified in the comments parameter.

Parameters

• file_pointer (file pointer) – a file pointer where to store the formula.

• comments (list(str)) – additional comments to put in the file.

Example:

>>> from pysat.formula import WCNFPlus
>>> cnf = WCNFPlus()
...
>>> # the formula is filled with a bunch of clauses
>>> with open('some-file.wcnf+', 'w') as fp:
... cnf.to_fp(fp) # writing to the file pointer

unweighted()

This method creates a plain (unweighted) copy of the internal formula. As a result, an object of class
CNFPlus is returned. Every clause (both hard or soft) of the original WCNFPlus formula is copied to the
clauses variable of the resulting plain formula, i.e. all weights are discarded.

Note that the cardinality constraints of the original (weighted) formula remain unchanged in the new (plain)
formula.

Returns an object of class CNFPlus.

Example:

>>> from pysat.formula import WCNF
>>> wcnf = WCNFPlus()
>>> wcnf.extend([[-3, 4], [5, 6]])
>>> wcnf.extend([[3], [-4], [-5], [-6]], weights=[1, 5, 3, 4])
>>> wcnf.append([[1, 2, 3], 1], is_atmost=True)
>>>
>>> cnf = wcnf.unweighted()
>>> print(cnf.clauses)
[[-3, 4], [5, 6], [3], [-4], [-5], [-6]]
>>> print(cnf.atmosts)
[[[1, 2, 3], 1]]

class pysat.formula.XOr(*args, **kwargs)
Exclusive disjunction. Given a list of operands (subformulas) 𝑓𝑖, 𝑖 ∈ {1, . . . , 𝑛}, 𝑛 ∈ N, it creates a formula
𝑓1 ⊕ 𝑓2 ⊕ . . .⊕ 𝑓𝑛. The list of operands of size at least 2 should be passed as arguments to the constructor.

42 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> xor = XOr(x, y, z)

If an additional Boolean keyword argument merge is provided set to True, the toolkit will try to flatten the
current XOr formula merging its equivalence sub-operands into the list of operands. For example, if XOr(XOr(x,
y), z, merge=True) is called, a new Formula object will be created with two operands: XOr(x, y) and z,
followed by merging x and y into the list of root-level XOr. This will result in a formula XOr(x, y, z). Merging
sub-operands is disabled by default if bitwise operations are used to create XOr formulas.

Example:

>>> from pysat.formula import *
>>> a1 = XOr(XOr(Atom('x'), Atom('y')), Atom('z'))
>>> a2 = XOr(XOr(Atom('x'), Atom('y')), Atom('z'), merge=True)
>>> a3 = Atom('x') ^ Atom('y') ^ Atom('z')
>>>
>>> print(a1)
(x ^ y) ^ z
>>> print(a2)
x ^ y ^ z
>>> print(a3)
(x ^ y) ^ z
>>>
>>> id(a1) == id(a2)
False
>>>
>>> id(a1) == id(a3)
True # formulas a1 and a3 refer to the same object

Note: If there are two formulas representing the same fact with and without merging enabled, they technically
sit in two distinct objects. Although PySAT tries to avoid it, clausification of these two formulas may result in
unique (different) auxiliary variables assigned to such two formulas.

simplified(assumptions=[])
Given a list of assumption literals, recursively simplifies the subformulas and creates a new formula.

Parameters assumptions (list(Formula)) – atomic assumptions

Return type Formula

Example:

>>> from pysat.formula import *
>>> x, y, z = Atom('x'), Atom('y'), Atom('z')
>>> a = x ^ y ^ z
>>>
>>> print(a.simplified(assumptions=[y]))
~x ^ z
>>> print(a.simplified(assumptions=[~y]))
x ^ z

1.1. Core PySAT modules 43

PySAT Documentation, Release 1.8.dev17

1.1.3 External engines (pysat.engines)

List of classes

Propagator An abstract class for creating external user-defined prop-
agators / reasoning engines to be used with solver
Cadical195 through the IPASIR-UP interface.

BooleanEngine A simple example Boolean constraint propagator inher-
iting from the class Propagator.

LinearConstraint A possible implementation of linear constraints over
Boolean variables, including cardinality and pseudo-
Boolean constraints.

ParityConstraint A possible implementation of parity constraints.

Module description

This module provides a user with the possibility to define their own propagation engines, i.e. constraint propagators,
attachable to a SAT solver. The implementation of this functionality builds on the use of the IPASIR-UP interface1.
This may come in handy when it is beneficial to reason over non-clausal constraints, for example, in the settings of
satisfiability modulo theories (SMT), constraint programming (CP) and lazy clause generation (LCG).

Note: Currently, the only SAT solver available in PySAT supporting the interface is CaDiCaL 1.9.5.

The interface allows a user to attach a single reasoning engine to the solver. This means that if one needs to support
multiple kinds of constraints simultaneously, the implementation of the engine may need to be sophisticated enough to
make it work.

It is imperative that any propagator a user defines must inherit the interface of the abstract class Propagator and
defines all the required methods for the correct operation of the engine.

An example propagator is shown in the class BooleanEngine. It currently supports two kinds of example constraints:
linear (cardinality and pseudo-Boolean) constraints and parity (exclusive OR, XOR) constraints. The engine can run
in the adaptive mode, i.e. it can enable and disable itself on the fly.

Once an engine is implemented, it should be attached to a solver object by calling connect_propagator() of
Cadical195. The propagator will then need to inform the solver what variable it requires to observe.

solver = Solver(name='cadical195', bootstrap_with=some_formula)

engine = MyPowerfulEngine(...)
solver.connect_propagator(engine)

attached propagator wants to observe these variables
for var in range(some_variables):

solver.observe(var)

...

Note: A user is encouraged to examine the source code of BooleanEngine in order to see how an external reasoning
1 Katalin Fazekas, Aina Niemetz, Mathias Preiner, Markus Kirchweger, Stefan Szeider, Armin Biere. IPASIR-UP: User Propagators for CDCL.

SAT. 2023. pp. 8:1-8:13

44 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

engine can be implemented and attached to CaDiCaL 1.9.5. Also consult the implementation of the corresponding
methods of Cadical195.

Module details

class pysat.engines.BooleanEngine(bootstrap_with=[], adaptive=True)
A simple example Boolean constraint propagator inheriting from the class Propagator. The idea is to exemplify
the use of external reasoning engines. The engine should be general enough to support various constraints over
Boolean variables.

Note: Note that this is not meant to be a model implementation of an external engine. One can devise a more
efficient implementation with the same functionality.

The initialiser of of the class object may be provided with a list of constraints, each being a tuple (‘type’, con-
straint), as a value for parameter bootstrap_with.

Currently, there are two types of constraints supported (to be specified) in the constraints passed in: 'linear'
and 'parity' (exclusive OR). The former will be handled as objects of class LinearConstraint while the
latter will be transformed into objects of ParityConstraint.

Here, each type of constraint is meant to have a list of literals stored in variable .lits. This is required to set up
watched lists properly.

The second keyword argument adaptive (set to True by default) denotes the fact that the engine should check
its own efficiency and disable or enable itself on the fly. This functionality is meant to exemplify how adaptive
external engines can be created. A user is referred to the source code of the implementation for the details.

adaptive_constants(pdecay, pbound, mdecay, mbound)
Set magic numeric constants used in adaptive mode.

adaptive_update(satisfied)
Update adaptive mode: either enable or disable the engine. This depends on the statistics accumulated in
the current run and whether or not the previous assignment found by the solver satisfied the constraints.

add_clause()

Extract a new clause to add to the solver if one exists; return an empty clause [] otherwise.

add_constraint(constraint)
Add a new constraint to the engine and integrate it to the internal structures, i.e. watched lists. Also, return
the newly added constraint to the callee.

check_model(model)
Check if a given model satisfies all the constraints.

cleanup_watched(lit, garbage)
Garbage collect holes in the watched list for +lit (and potentially for -lit).

decide()→ int
This method allows the propagator to influence the decision process. Namely, it is used when the solver
asks the propagator for the next decision literal (if any). If the method returns 0, the solver will make its
own choice.

Return type int

1.1. Core PySAT modules 45

PySAT Documentation, Release 1.8.dev17

disable()

Notify the solver that the propagator should become inactive as it does not contribute much to the infer-
ence process. From now on, it will only be called to check complete models obtained by the solver (see
check_model()).

enable()

Notify the solver that the propagator is willing to become active from now on.

is_active()

Return engine’s status. It is deemed active if the method returns True and passive otherwise.

on_assignment(lit, fixed)
Update the propagator’s state given a new assignment.

on_backtrack(to)
Cancel all the decisions up to a certain level.

on_new_level()

Keep track of decision level updates.

preprocess()

Run some (naive) preprocessing techniques if available for the types of constraints under considerations.
Each type of constraints is handled separately of the rest of constraints.

process_linear()

Process linear constraints. Here we apply simple pairwise summation of constraints. As the number of
result constraints is quadratic, we stop the process as soon as we get 100 new constraints. Also, if a result
of the sum is longer than each of the summands, the result constraint is ignored.

This is trivial procedure is made to illustrate how constraint processing can be done. It can be made depen-
dent on user-specified parameters, e.g. the number of rounds or a numeric value indicating when a pair of
constraints should be added and when they should not be added. For consideration in the future.

process_parity()

Process parity/XOR constraints. Basically, this runs Gaussian elimination and see if anything can be derived
from it.

propagate()

Run the propagator given the current assignment.

provide_reason(lit)
Return the reason clause for a given literal.

setup_observe(solver)
Inform the solver about all the variables the engine is interested in. The solver will mark them as observed
by the propagator.

class pysat.engines.LinearConstraint(lits=[], weights={}, bound=1)
A possible implementation of linear constraints over Boolean variables, including cardinality and pseudo-
Boolean constraints. Each such constraint is meant to be in the less-than form, i.e. a user should trans-
form the literals, weights and the right-hand side of the constraint into this form before creating an object of
LinearConstraint. The class is designed to work with BooleanEngine.

The implementation of linear constraint propagation builds on the use of counters. Basically, each time a literal is
assigned to a positive value, it is assumed to contribute to the total weight on the left-hand side of the constraint,
which is calculated and compared to the right-hand side.

46 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

The constructor receives three arguments: lits, weights, and bound. Argument lits represents a list of
literals on the left-hand side of the constraint while argument weights contains either a list of their weights or
a dictionary mapping literals to weights. Finally, argument bound is the right-hand side of the constraint.

Note that if no weights are provided, each occurrence of a literal is assumed to have weight 1.

Note: All weights are supposed to be non-negative values.

Parameters

• lits – list of literals (left-hand side)

• weights (list or dict) – weights of the literals

• bound (int or float) – right-hand side of the constraint

abandon_unweighted(dummy_lit)
Clear the reason of a given literal.

abandon_weighted(lit)
Clear the reason of a given literal.

attach_values(values)
Give the constraint access to centralised values exposed from BooleanEngine.

explain_failure()

Provide a reason clause for why the previous model falsified the constraint. This will clause will be added
to the solver.

falsified_by(model)
Check if the constraint is violated by a given assignment. Upon receiving such an input assignment, the
method counts the sum of the weights of all satisfied literals and checks if it exceeds the right-hand side.

justify_unweighted(dummy_lit)
Provide a reason for a literal propagated by this constraint. In the unweighted case, all the literals propagated
by this constraint share the same reason.

justify_weighted(lit)
Provide a reason for a literal propagated by this constraint. In the case of weighted constraints, a literal may
have a reason different from the other literals propagated by the same constraint.

propagate_unweighted(lit=None)
Get all the consequences of a given literal in the unweighted case. The implementation counts how many
literals on the left-hand side are assigned to true.

propagate_weighted(lit=None)
Get all the consequences of a given literal in the weighted case. The implementation counts the weights of
all the literals assigned to true and propagates all the other literals (yet unassigned) such that adding their
weights to the total sum would exceed the right-hand side of the constraint.

register_watched(to_watch)
Add self to the centralised watched literals lists in BooleanEngine.

unassign(lit)
Unassign a given literal, which is done by decrementing the literal’s contribution to the total sum of the
weights of assigned literals.

1.1. Core PySAT modules 47

PySAT Documentation, Release 1.8.dev17

class pysat.engines.Propagator

An abstract class for creating external user-defined propagators / reasoning engines to be used with solver
Cadical195 through the IPASIR-UP interface. All user-defined propagators should inherit the interface of this
abstract class, i.e. all the below methods need to be properly defined. The interface is as follows:

class Propagator(object):
def on_assignment(self, lit: int, fixed: bool = False) -> None:

pass # receive a new literal assigned by the solver

def on_new_level(self) -> None:
pass # get notified about a new decision level

def on_backtrack(self, to: int) -> None:
pass # process backtracking to a given level

def check_model(self, model: List[int]) -> bool:
pass # check if a given assignment is indeed a model

def decide(self) -> int:
return 0 # make a decision and (if any) inform the solver

def propagate(self) -> List[int]:
return [] # propagate and return inferred literals (if any)

def provide_reason(self, lit: int) -> List[int]:
pass # explain why a given literal was propagated

def add_clause(self) -> List[int]:
return [] # add an(y) external clause to the solver

add_clause()→ List[int]
The method is called by the solver to add an external clause if there is any. The clause can be arbitrary but
if it is root-satisfied or tautological, the solver will ignore it without learning it.

Root-falsified literals are eagerly removed from the clause. Falsified clauses trigger conflict analysis, propa-
gating clauses trigger propagation. Unit clauses always (unless root-satisfied, see above) trigger backtrack-
ing to level 0.

An empty clause (or root falsified clause, see above) makes the formula unsatisfiable and stops the search
immediately.

Return type iterable(int)

check_model(model: List[int])→ bool
The method is used for checking if a given (complete) truth assignment satisfies the constraint managed by
the propagator. Receives a single argument storing the truth assignment found by the solver.

Note: If this method returns False, the propagator must be ready to provide an external clause in the
following callback.

Parameters model (iterable(int)) – a list of integers representing the current model

Return type bool

48 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

decide()→ int
This method allows the propagator to influence the decision process. Namely, it is used when the solver
asks the propagator for the next decision literal (if any). If the method returns 0, the solver will make its
own choice.

Return type int

on_assignment(lit: int, fixed: bool = False)→ None
The method is called to notify the propagator about an assignment made for one of the observed variables.
An assignment is set to be “fixed” if it is permanent, i.e. the propagator is not allowed to undo it.

Parameters

• lit (int) – assigned literal

• fixed (bool) – a flag to mark the assignment as “fixed”

on_backtrack(to: int)→ None
The method for notifying the propagator about backtracking to a given decision level. Accepts a single
argument to signifying the backtrack level.

Parameters to (int) – backtrack level

on_new_level()→ None
The method called to notify the propagator about a new decision level created by the solver.

propagate()→ List[int]
The method should invoke propagation under the current assignment. It can return either a list of liter-
als propagated or an empty list [], informing the solver that no propagation is made under the current
assignment.

Return type int

provide_reason(lit: int)→ List[int]
The method is called by the solver when asking the propagator for the reason / antecedent clause for a literal
the propagator previously inferred. This clause will be used in the following conflict analysis.

Note: The clause must contain the propagated literal.

Parameters lit (int) – literal to provide reason for

Return type iterable(int)

1.1.4 Pseudo-Boolean encodings (pysat.pb)

List of classes

EncType This class represents a C-like enum type for choosing the
pseudo-Boolean encoding to use.

PBEnc Abstract class responsible for the creation of pseudo-
Boolean constraints encoded to a CNF formula.

1.1. Core PySAT modules 49

PySAT Documentation, Release 1.8.dev17

Module description

Note: Functionality of this module is available only if the PyPBLib package is installed, e.g. from PyPI:

$ pip install pypblib

This module provides access to the basic functionality of the PyPBLib library developed by the Logic Optimization
Group of the University of Lleida. PyPBLib provides a user with an extensive Python API to the well-known PBLib
library1. Note the PyPBLib has a number of additional features that cannot be accessed through PySAT at this point.
(One concrete example is a range of cardinality encodings, which clash with the internal pysat.card module.) If a
user needs some functionality of PyPBLib missing in this module, he/she may apply PyPBLib as a standalone library,
when working with PySAT.

A pseudo-Boolean constraint is a constraint of the form: (
∑︀𝑛

𝑖=1 𝑎𝑖 · 𝑥𝑖) ∘ 𝑘, where 𝑎𝑖 ∈ N, 𝑥𝑖 ∈ {𝑦𝑖,¬𝑦𝑖}, 𝑦𝑖 ∈
B, and ∘ ∈ {≤,=,≥}. Pseudo-Boolean constraints arise in a number of important practical applications. Thus,
several encodings of pseudo-Boolean constraints into CNF formulas are known2. The list of pseudo-Boolean encodings
supported by this module include BDD34, sequential weight counters5, sorting networks3, adder networks3, and binary
merge6. Access to all cardinality encodings can be made through the main class of this module, which is PBEnc.

Module details

class pysat.pb.EncType

This class represents a C-like enum type for choosing the pseudo-Boolean encoding to use. The values denoting
the encodings are:

best = 0
bdd = 1
seqcounter = 2
sortnetwrk = 3
adder = 4
binmerge = 5
native = 6

The desired encoding can be selected either directly by its integer identifier, e.g. 2, or by its alphabetical name,
e.g. EncType.seqcounter.

All the encodings are produced and returned as a list of clauses in the pysat.formula.CNFPlus format.

Note that the encoding type can be set to best, in which case the encoder selects one of the other encodings
from the list (in most cases, this invokes the bdd encoder).

exception pysat.pb.NoSuchEncodingError

This exception is raised when creating an unknown LEQ, GEQ, or Equals constraint encoding.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

1 Tobias Philipp, Peter Steinke. PBLib - A Library for Encoding Pseudo-Boolean Constraints into CNF. SAT 2015. pp. 9-16
2 Olivier Roussel, Vasco M. Manquinho. Pseudo-Boolean and Cardinality Constraints. Handbook of Satisfiability. 2009. pp. 695-733
3 Niklas Eén, Niklas Sörensson. Translating Pseudo-Boolean Constraints into SAT. JSAT. vol. 2(1-4). 2006. pp. 1-26
4 Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell. BDDs for Pseudo-Boolean Constraints - Revisited. SAT. 2011.

pp. 61-75
5 Steffen Hölldobler, Norbert Manthey, Peter Steinke. A Compact Encoding of Pseudo-Boolean Constraints into SAT. KI. 2012. pp. 107-118
6 Norbert Manthey, Tobias Philipp, Peter Steinke. A More Compact Translation of Pseudo-Boolean Constraints into CNF Such That Generalized

Arc Consistency Is Maintained. KI. 2014. pp. 123-134

50 Chapter 1. API documentation

https://pypi.org/project/pypblib/
http://ulog.udl.cat/
http://ulog.udl.cat/
http://tools.computational-logic.org/content/pblib.php
http://tools.computational-logic.org/content/pblib.php
http://hardlog.udl.cat/static/doc/pypblib/html/index.html

PySAT Documentation, Release 1.8.dev17

class pysat.pb.PBEnc

Abstract class responsible for the creation of pseudo-Boolean constraints encoded to a CNF formula. The class
has three main class methods for creating LEQ, GEQ, and Equals constraints. Given (1) either a list of weighted
literals or a list of unweighted literals followed by a list of weights, (2) an integer bound and an encoding type, each
of these methods returns an object of class pysat.formula.CNFPlus representing the resulting CNF formula.

Since the class is abstract, there is no need to create an object of it. Instead, the methods should be called directly
as class methods, e.g. PBEnc.atmost(wlits, bound) or PBEnc.equals(lits, weights, bound). An
example usage is the following:

>>> from pysat.pb import *
>>> cnf = PBEnc.atmost(lits=[1, 2, 3], weights=[1, 2, 3], bound=3)
>>> print(cnf.clauses)
[[4], [-1, -5], [-2, -5], [5, -3, -6], [6]]
>>> cnf = PBEnc.equals(lits=[1, 2, 3], weights=[1, 2, 3], bound=3, encoding=EncType.
→˓bdd)
>>> print(cnf.clauses)
[[4], [-5, -2], [-5, 2, -1], [-5, -1], [-6, 1], [-7, -2, 6], [-7, 2], [-7, 6], [-8,␣
→˓-3, 5], [-8, 3, 7], [-8, 5, 7], [8]]

classmethod atleast(lits, weights=None, bound=1, top_id=None, vpool=None, encoding=0)
A synonym for PBEnc.geq().

classmethod atmost(lits, weights=None, bound=1, top_id=None, vpool=None, encoding=0)
A synonim for PBEnc.leq().

classmethod equals(lits, weights=None, bound=1, top_id=None, vpool=None, encoding=0)
This method can be used for creating a CNF encoding of a weighted EqualsK constraint, i.e. of∑︀𝑛

𝑖=1 𝑎𝑖 · 𝑥𝑖 = 𝑘. The method shares the arguments and the return type with method PBEnc.leq().
Please, see it for details.

classmethod geq(lits, weights=None, bound=1, top_id=None, vpool=None, encoding=0)
This method can be used for creating a CNF encoding of a GEQ (weighted AtLeastK) constraint, i.e. of∑︀𝑛

𝑖=1 𝑎𝑖 · 𝑥𝑖 ≥ 𝑘. The method shares the arguments and the return type with method PBEnc.leq().
Please, see it for details.

classmethod leq(lits, weights=None, bound=1, top_id=None, vpool=None, encoding=0)
This method can be used for creating a CNF encoding of a LEQ (weighted AtMostK) constraint, i.e. of∑︀𝑛

𝑖=1 𝑎𝑖 · 𝑥𝑖 ≤ 𝑘. The resulting set of clauses is returned as an object of class formula.CNF.

The input list of literals can contain either integers or pairs (l, w), where l is an integer literal and w is an
integer weight. The latter can be done only if no weights are specified separately. The type of encoding
to use can be specified using the encoding parameter. By default, it is set to EncType.best, i.e. it is up
to the PBLib encoder to choose the encoding type.

Parameters

• lits (iterable(int)) – a list of literals in the sum.

• weights (iterable(int)) – a list of weights

• bound (int) – the value of bound 𝑘.

• top_id (integer or None) – top variable identifier used so far.

• vpool (IDPool) – variable pool for counting the number of variables.

• encoding (integer) – identifier of the encoding to use.

Return type pysat.formula.CNFPlus

1.1. Core PySAT modules 51

PySAT Documentation, Release 1.8.dev17

1.1.5 Formula processing (pysat.process)

List of classes

Processor This class provides interface to CaDiCaL's preprocessor.

Module description

This module provides access to the preprocessor functionality of CaDiCaL 1.5.3. It can be used to process1 (also
see references therein) a given CNF formula and output a another formula, which is guaranteed to be equisatisfiable
with the original formula. The processor can be invoked for a user-provided number of rounds. Also, the following
preprocessing techniques can be used when running the processor:

• blocked clause elimination

• covered clause elimination

• globally-blocked clause elimination

• equivalent literal substitution

• bounded variable elimination

• failed literal probing

• hyper binary resolution

• clause subsumption

• clause vivification

Note that the numerous parameters used in CaDiCaL for tweaking the preprocessor’s behavior are currently unavailable
here. (Default values are used.)

>>> from pysat.formula import CNF
>>> from pysat.process import Processor
>>> from pysat.solvers import Solver
>>>
>>> cnf = CNF(from_clauses=[[1, 2], [3, 2], [-1, 4, -2], [3, -2], [3, 4]])
>>> processor = Processor(bootstrap_with=cnf)
>>>
>>> processed = processor.process()
>>> print(processed.clauses)
[]
>>> print(processed.status)
True
>>>
>>> with Solver(bootstrap_with=processed) as solver:
... solver.solve()
True
... print('proc model:', solver.get_model())
proc model: []
... print('orig model:', processor.restore(solver.get_model()))
orig model: [1, -2, 3, -4]

(continues on next page)

1 Armin Biere, Matti Järvisalo, Benjamin Kiesl. Preprocessing in SAT Solving. In Handbook of Satisfiability - Second Edition. pp. 391-435

52 Chapter 1. API documentation

https://github.com/arminbiere/cadical

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>>
>>> processor.delete()

Module details

class pysat.process.Processor(bootstrap_with=None)
This class provides interface to CaDiCaL’s preprocessor. The only input parameter is bootstrap_with, which
is expected to be a CNF formula or a list (or iterable) of clauses.

Parameters bootstrap_with (CNF or iterable(iterable(int))) – a list of clauses for processor initial-
ization.

Once created and used, a processor must be deleted with the delete() method. Alternatively, if created using
the with statement, deletion is done automatically when the end of the with block is reached. It is important to
keep the processor if a user wants to restore a model of the original formula.

The main methods of this class are process() and restore(). The former calls CaDiCaL’s preprocessor while
the latter can be used to reconstruct a model of the original formula given a model for the processed formula as
illustrated below.

Note how keeping the Processor object is needed for model restoration. (If it is deleted, the information needed
for model reconstruction is lost.)

>>> from pysat.process import Processor
>>> from pysat.solvers import Solver
>>>
>>> processor = Processor(bootstrap_with=[[-1, 2], [1, -2]])
>>> processor.append_formula([[-2, 3], [1]])
>>> processor.add_clause([-3, 4])
>>>
>>> processed = processor.process()
>>> print(processed.clauses)
[]
>>> print(processed.status)
True
>>>
>>> with Solver(bootstrap_with=processed) as solver:
... solver.solve()
True
... print('proc model:', solver.get_model())
proc model: []
... print('orig model:', processor.restore(solver.get_model()))
orig model: [1, 2, 3, 4]
>>>
>>> processor.delete()

add_clause(clause)
Add a single clause to the processor.

Parameters clause (list(int) or any iterable(int)) – a clause to add

>>> processor = Processor()
>>> processor.add_clause([-1, 2, 3])

1.1. Core PySAT modules 53

PySAT Documentation, Release 1.8.dev17

append_formula(formula)
Add a given list of clauses into the solver.

Parameters formula (iterable(iterable(int)), or CNF) – a list of clauses.

>>> cnf = CNF()
... # assume the formula contains clauses
>>> processor = Processor()
>>> processor.append_formula(cnf)

delete()

Actual destructor.

get_status()

Preprocessor’s status as the result of the previous call to process(). A False status indicates that the
formula is found to be unsatisfiable by the preprocessor. Otherwise, the status equals True.

Return type bool

process(rounds=1, block=False, cover=False, condition=False, decompose=True, elim=True, probe=True,
probehbr=True, subsume=True, vivify=True)

Runs CaDiCaL’s preprocessor for the internal formula for a given number of rounds and using the techniques
specified in the arguments. Note that the default values of all the arguments used are set as in the default
configuration of CaDiCaL 1.5.3.

As the result, the method returns a CNF object containing the processed formula. Additionally to the clauses,
the formula contains a status variable, which is set to False if the preprocessor found the original for-
mula to be unsatisfiable (and True otherwise). The same status value is set to the status variable of the
processor itself.

It is important to note that activation of some of the preprocessing techniques conditionally depends on
the activation of other preprocessing techniques. For instance, subsumed, blocked and covered clause
elimination is invoked only if bounded variable elimination is active. Subsumption elimination in turn may
trigger vivification and transitive reduction if the corresponding flags are set.

Parameters

• rounds (int) – number of preprocessing rounds

• block (bool) – apply blocked clause elimination

• cover (bool) – apply covered clause elimination

• condition (bool) – detect conditional autarkies and apply globally-blocked clause elim-
ination

• decompose (bool) – detect strongly connected components (SCCs) in the binary implica-
tion graph (BIG) and apply equivalent literal substitution (ELS)

• elim (bool) – apply bounded variable elimination

• probe (bool) – apply failed literal probing

• probehbr (bool) – learn hyper binary resolvents while probing

• subsume (bool) – apply global forward clause subsumption

• vivify (bool) – apply clause vivification

Returns processed formula

Return type CNF

54 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

>>> from pysat.process import Processor
>>>
>>> processor = Processor(bootstrap_with=[[-1, 2], [-2, 3], [-1, -3]])
>>> processor.add_clause([1])
>>>
>>> processed = processor.process()
>>> print(processed.clauses)
[[]]
>>> print(processed.status)
False # this means the processor decided the formula to be unsatisfiable
>>>
>>> with Solver(bootstrap_with=processed) as solver:
... solver.solve()
False
>>> processor.delete()

restore(model)
Reconstruct a model for the original formula given a model for the processed formula. Done by using
CaDiCaL’s extend() and reconstruction stack functionality.

Parameters model (iterable(int)) – a model for the preprocessed formula

Returns extended model satisfying the original formula

Return type list(int)

>>> from pysat.process import Processor
>>>
>>> with Processor(bootstrap_with=[[-1, 2], [-2, 3]]) as proc:
... proc.add_clause([1])
... processed = proc.process()
... with Solver(bootstrap_with=processed) as solver:
... solver.solve()
... print('model:', proc.restore(solver.get_model()))
...
model: [1, 2, 3]

1.1.6 SAT solvers’ API (pysat.solvers)

1.1. Core PySAT modules 55

PySAT Documentation, Release 1.8.dev17

List of classes

SolverNames This class serves to determine the solver requested by a
user given a string name.

Solver Main class for creating and manipulating a SAT solver.
Cadical103 CaDiCaL 1.0.3 SAT solver.
Cadical153 CaDiCaL 1.5.3 SAT solver.
Cadical195 CaDiCaL 1.9.5 SAT solver.
CryptoMinisat CryptoMinisat solver accessed through pycryptosat

package.
Gluecard3 Gluecard 3 SAT solver.
Gluecard4 Gluecard 4 SAT solver.
Glucose3 Glucose 3 SAT solver.
Glucose4 Glucose 4.1 SAT solver.
Glucose42 Glucose 4.2.1 SAT solver.
Lingeling Lingeling SAT solver.
MapleChrono MapleLCMDistChronoBT SAT solver.
MapleCM MapleCM SAT solver.
Maplesat MapleCOMSPS_LRB SAT solver.
Mergesat3 MergeSat 3 SAT solver.
Minicard Minicard SAT solver.
Minisat22 MiniSat 2.2 SAT solver.
MinisatGH MiniSat SAT solver (version from github).

Module description

This module provides incremental access to a few modern SAT solvers. The solvers supported by PySAT are:

• CaDiCaL (rel-1.0.3)

• Glucose (3.0)

• Glucose (4.1)

• Glucose (4.2.1)

• Lingeling (bbc-9230380-160707)

• MapleLCMDistChronoBT (SAT competition 2018 version)

• MapleCM (SAT competition 2018 version)

• Maplesat (MapleCOMSPS_LRB)

• Mergesat (3.0)

• Minicard (1.2)

• Minisat (2.2 release)

• Minisat (GitHub version)

Additionally, PySAT includes the versions of Glucose3 and Glucose4 that support native cardinality constraints,
ported from Minicard:

• Gluecard3

• Gluecard4

56 Chapter 1. API documentation

https://github.com/arminbiere/cadical
http://www.labri.fr/perso/lsimon/glucose/
http://www.labri.fr/perso/lsimon/glucose/
http://www.labri.fr/perso/lsimon/glucose/
http://fmv.jku.at/lingeling/
http://sat2018.forsyte.tuwien.ac.at/solvers/main_and_glucose_hack/
http://sat2018.forsyte.tuwien.ac.at/solvers/main_and_glucose_hack/
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
https://github.com/conp-solutions/mergesat
https://github.com/liffiton/minicard
http://minisat.se/MiniSat.html
https://github.com/niklasso/minisat

PySAT Documentation, Release 1.8.dev17

Finally, PySAT offers rudimentary support of CryptoMiniSat53 through the interface provided by the pycryptosat
package. The functionality is exposed via the class CryptoMinisat. Note that the solver currently implements only
the basic functionality, i.e. adding clauses and XOR-clauses as well as making (incremental) SAT calls.

All solvers can be accessed through a unified MiniSat-like1 incremental2 interface described below.

The module provides direct access to all supported solvers using the corresponding classes Cadical103, Cadical153,
Cadical195, CryptoMinisat, Gluecard3, Gluecard4, Glucose3, Glucose4, Lingeling, MapleChrono,
MapleCM, Maplesat, Mergesat3, Minicard, Minisat22, and MinisatGH. However, the solvers can also be ac-
cessed through the common base class Solver using the solver name argument. For example, both of the following
pieces of code create a copy of the Glucose3 solver:

>>> from pysat.solvers import Glucose3, Solver
>>>
>>> g = Glucose3()
>>> g.delete()
>>>
>>> s = Solver(name='g3')
>>> s.delete()

The pysat.solvers module is designed to create and manipulate SAT solvers as oracles, i.e. it does not give access
to solvers’ internal parameters such as variable polarities or activities. PySAT provides a user with the following basic
SAT solving functionality:

• creating and deleting solver objects

• adding individual clauses and formulas to solver objects

• making SAT calls with or without assumptions

• propagating a given set of assumption literals

• setting preferred polarities for a (sub)set of variables

• extracting a model of a satisfiable input formula

• enumerating models of an input formula

• extracting an unsatisfiable core of an unsatisfiable formula

• extracting a DRUP proof logged by the solver

PySAT supports both non-incremental and incremental SAT solving. Incrementality can be achieved with the use of
the MiniSat-like assumption-based interface2. It can be helpful if multiple calls to a SAT solver are needed for the same
formula using different sets of “assumptions”, e.g. when doing consecutive SAT calls for formulaℱ∧(𝑎𝑖1∧. . .∧𝑎𝑖1+𝑗1)
and ℱ ∧ (𝑎𝑖2 ∧ . . . ∧ 𝑎𝑖2+𝑗2), where every 𝑎𝑙𝑘 is an assumption literal.

There are several advantages of using assumptions: (1) it enables one to keep and reuse the clauses learnt during previ-
ous SAT calls at a later stage and (2) assumptions can be easily used to extract an unsatisfiable core of the formula. A
drawback of assumption-based SAT solving is that the clauses learnt are longer (they typically contain many assumption
literals), which makes the SAT calls harder.

In PySAT, assumptions should be provided as a list of literals given to the solve() method:

>>> from pysat.solvers import Solver
>>> s = Solver()
>>>

(continues on next page)

3 Mate Soos, Karsten Nohl, Claude Castelluccia. Extending SAT Solvers to Cryptographic Problems. SAT 2009. pp. 244-257
1 Niklas Eén, Niklas Sörensson. An Extensible SAT-solver. SAT 2003. pp. 502-518
2 Niklas Eén, Niklas Sörensson. Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4). 2003. pp. 543-560

1.1. Core PySAT modules 57

http://www.cs.utexas.edu/~marijn/drup/

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

... # assume that solver s is fed with a formula
>>>
>>> s.solve() # a simple SAT call
True
>>>
>>> s.solve(assumptions=[1, -2, 3]) # a SAT call with assumption literals
False
>>> s.get_core() # extracting an unsatisfiable core
[3, 1]

In order to shorten the description of the module, the classes providing direct access to the individual solvers, i.e.
classes Cadical103, Cadical153, Cadical195, CryptoMinisat, Gluecard3, Gluecard4, Glucose3, Glucose4,
Glucose42, Lingeling, MapleChrono, MapleCM, Maplesat, Mergesat3, Minicard, Minisat22, and MinisatGH,
are omitted. They replicate the interface of the base class Solver and, thus, can be used the same exact way.

Module details

exception pysat.solvers.NoSuchSolverError

This exception is raised when creating a new SAT solver whose name does not match any name in SolverNames.
The list of known solvers includes the names ‘cadical103’, ‘cadical153’, ‘cadical195’, ‘cryptosat’, ‘gluecard3’,
‘gluecard4’, ‘glucose3’, ‘glucose4’, glucose42, ‘lingeling’, ‘maplechrono’, ‘maplecm’, ‘maplesat’, ‘mergesat3’,
‘minicard’, ‘minisat22’, and ‘minisatgh’.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class pysat.solvers.Solver(name='m22', bootstrap_with=None, use_timer=False, **kwargs)
Main class for creating and manipulating a SAT solver. Any available SAT solver can be accessed as an object
of this class and so Solver can be seen as a wrapper for all supported solvers.

The constructor of Solver has only one mandatory argument name, while all the others are default. This means
that explicit solver constructors, e.g. Glucose3 or MinisatGH etc., have only default arguments.

Parameters

• name (str) – solver’s name (see SolverNames).

• bootstrap_with (iterable(iterable(int))) – a list of clauses for solver initialization.

• use_timer (bool) – whether or not to measure SAT solving time.

The bootstrap_with argument is useful when there is an input CNF formula to feed the solver with. The
argument expects a list of clauses, each clause being a list of literals, i.e. a list of integers.

If set to True, the use_timer parameter will force the solver to accumulate the time spent by all SAT calls made
with this solver but also to keep time of the last SAT call.

Once created and used, a solver must be deleted with the delete() method. Alternatively, if created using the
with statement, deletion is done automatically when the end of the with block is reached.

Given the above, a couple of examples of solver creation are the following:

>>> from pysat.solvers import Solver, Minisat22
>>>
>>> s = Solver(name='g4')
>>> s.add_clause([-1, 2])

(continues on next page)

58 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> s.add_clause([-1, -2])
>>> s.solve()
True
>>> print(s.get_model())
[-1, -2]
>>> s.delete()
>>>
>>> with Minisat22(bootstrap_with=[[-1, 2], [-1, -2]]) as m:
... m.solve()
True
... print(m.get_model())
[-1, -2]

Note that while all explicit solver classes necessarily have default arguments bootstrap_with and
use_timer, solvers Cadical103, Cadical153, Cadical195, Lingeling, Gluecard3, Gluecard4,
Glucose3, Glucose4, Glucose42, MapleChrono, MapleCM, and Maplesat can have additional default argu-
ments. One such argument supported by is DRUP proof logging. This can be enabled by setting the with_proof
argument to True (False by default):

>>> from pysat.solvers import Lingeling
>>> from pysat.examples.genhard import PHP
>>>
>>> cnf = PHP(nof_holes=2) # pigeonhole principle for 3 pigeons
>>>
>>> with Lingeling(bootstrap_with=cnf.clauses, with_proof=True) as l:
... l.solve()
False
... l.get_proof()
['-5 0', '6 0', '-2 0', '-4 0', '1 0', '3 0', '0']

Additionally, Glucose-based solvers, namely Glucose3, Glucose4, Glucose42, Gluecard3, and Gluecard4
have one more default argument incr (False by default), which enables incrementality features introduced in
Glucose34. To summarize, the additional arguments of Glucose are:

Parameters

• incr (bool) – enable the incrementality features of Glucose34.

• with_proof (bool) – enable proof logging in the DRUP format.

Finally, most MiniSat-based solvers can be exploited in the “warm-start” mode in the case of satisfiable formulas.
This may come in handy in various model enumeration settings. Note that warm-start mode is disabled in the
case of limited solving with “unknown” outcomes. Warm-start mode can be set with the use of the warm_start
parameter:

Parameters warm_start (bool) – use the solver in the “warm-start” mode

accum_stats()

Get accumulated low-level stats from the solver. Currently, the statistics includes the number of restarts,
conflicts, decisions, and propagations.

Return type dict.

Example:
4 Gilles Audemard, Jean-Marie Lagniez, Laurent Simon. Improving Glucose for Incremental SAT Solving with Assumptions: Application to

MUS Extraction. SAT 2013. pp. 309-317

1.1. Core PySAT modules 59

http://www.cs.utexas.edu/~marijn/drup/
http://www.cs.utexas.edu/~marijn/drup/

PySAT Documentation, Release 1.8.dev17

>>> from pysat.examples.genhard import PHP
>>> cnf = PHP(5)
>>> from pysat.solvers import Solver
>>> with Solver(bootstrap_with=cnf) as s:
... print(s.solve())
... print(s.accum_stats())
False
{'restarts': 2, 'conflicts': 201, 'decisions': 254, 'propagations': 2321}

activate_atmost()

Activate native linear (cardinality or pseudo-Boolean) constraint reasoning. This is supported only by
Cadical195 by means of its external propagators functionality and the use of BooleanEngine.

Note: IPASIR-UP related. Cadical195 only.

add_atmost(lits, k, weights=[], no_return=True)
This method is responsible for adding a new native AtMostK (see pysat.card) constraint.

Note that most of the solvers do not support native AtMostK constraints.

An AtMostK constraint is
∑︀𝑛

𝑖=1 𝑥𝑖 ≤ 𝑘. A native AtMostK constraint should be given as a pair lits and
k, where lits is a list of literals in the sum.

Also, besides unweighted AtMostK constraints, some solvers (see Cadical195) support their weighted
counterparts, i.e. pseudo-Boolean constraints of the form

∑︀𝑛
𝑖=1 𝑤𝑖 · 𝑥𝑖 ≤ 𝑘. The weights of the literals

can be specified using the argument weights.

Parameters

• lits (iterable(int)) – a list of literals

• k (int) – upper bound on the number of satisfied literals

• weights (list(int)) – a list of weights

• no_return (bool) – check solver’s internal formula and return the result, if set to False

Return type bool if no_return is set to False.

A usage example is the following:

>>> s = Solver(name='mc', bootstrap_with=[[1], [2], [3]])
>>> s.add_atmost(lits=[1, 2, 3], k=2, no_return=False)
False
>>> # the AtMostK constraint is in conflict with initial unit clauses

add_clause(clause, no_return=True)
This method is used to add a single clause to the solver. An optional argument no_return controls whether
or not to check the formula’s satisfiability after adding the new clause.

Parameters

• clause (iterable(int)) – an iterable over literals.

• no_return (bool) – check solver’s internal formula and return the result, if set to False.

Return type bool if no_return is set to False.

60 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

Note that a clause can be either a list of integers or another iterable type over integers, e.g. tuple or set
among others.

A usage example is the following:

>>> s = Solver(bootstrap_with=[[-1, 2], [-1, -2]])
>>> s.add_clause([1], no_return=False)
False

add_xor_clause(lits, value=True)
Add a new XOR clause to solver’s internal formula. The input parameters include the list of literals and the
right-hand side (the value of the sum).

Note that XOR clauses are currently supported only by CryptoMinisat.

Parameters

• lits (iterable(int)) – list of literals in the clause (left-hand side)

• value (bool) – value of the sum (right-hand-side)

A usage example is the following:

>>> from pysat.solvers import Solver
>>> with Solver(name='cms', bootstrap_with=[[1, 3]]) as solver:
... solver.add_xor_clause(lits=[1, 2], value=True)
... for model in solver.enum_models():
... print(model)
...
[-1, 2, 3]
[1, -2, 3]
[1, -2, -3]

append_formula(formula, no_return=True)
This method can be used to add a given list of clauses into the solver.

Parameters

• formula (iterable(iterable(int))) – a list of clauses.

• no_return (bool) – check solver’s internal formula and return the result, if set to False.

The no_return argument is set to True by default.

Return type bool if no_return is set to False.

>>> cnf = CNF()
... # assume the formula contains clauses
>>> s = Solver()
>>> s.append_formula(cnf.clauses, no_return=False)
True

clear_interrupt()

Clears a previous interrupt. If a limited SAT call was interrupted using the interrupt() method, this
method must be called before calling the SAT solver again.

conf_budget(budget=- 1)
Set limit (i.e. the upper bound) on the number of conflicts in the next limited SAT call (see
solve_limited()). The limit value is given as a budget variable and is an integer greater than 0. If
the budget is set to 0 or -1, the upper bound on the number of conflicts is disabled.

1.1. Core PySAT modules 61

PySAT Documentation, Release 1.8.dev17

Parameters budget (int) – the upper bound on the number of conflicts.

Example:

>>> from pysat.solvers import MinisatGH
>>> from pysat.examples.genhard import PHP
>>>
>>> cnf = PHP(nof_holes=20) # PHP20 is too hard for a SAT solver
>>> m = MinisatGH(bootstrap_with=cnf.clauses)
>>>
>>> m.conf_budget(2000) # getting at most 2000 conflicts
>>> print(m.solve_limited()) # making a limited oracle call
None
>>> m.delete()

configure(parameters)
Configure Cadical153, Cadical195, and also Glucose42 by setting some of the predefined parameters
to selected values. Note that this method is supposed to be invoked only for Cadical153 and Cadical195
– no other solvers support this for now. (Additionally, one can use it to set some of the randomness related
parameters in Glucose42. No other options can be set for Glucose42.)

Also note that this call must follow the creation of the new solver object; otherwise, an exception may be
thrown.

The list of available options of Cadical153 and Cadical195 and the corresponding values they can be
assigned to is provided here.

The list of available options of Glucose42 includes:

• rnd-seed: random seed (integer)

• rnd-freq: frequency of random decisions (float, 0 <= value <= 1)

• rnd-init-act: random initial activities (bool)

• rnd-pol: random variable polarities when branching (bool)

• rnd-first-descent: random decisions before the first conflic (bool)

Parameters parameters (dict) – parameter names mapped to integer/boolean/floating-point
values

connect_propagator(propagator)
Attach an external propagator through the IPASIR-UP interface. The only expected argument is
propagator, which must be an object of a class inheriting from the abstract class Propagator.

Note: IPASIR-UP related. Cadical195 only.

dec_budget(budget)
Set limit (i.e. the upper bound) on the number of decisions in the next limited SAT call (see
solve_limited()). The limit value is given as a budget variable and is an integer greater than 0. If
the budget is set to 0 or -1, the upper bound on the number of decisions is disabled.

Note that this functionality is supported by Cadical103, Cadical153, and Cadical195 only!

Parameters budget (int) – the upper bound on the number of decisions.

Example:

62 Chapter 1. API documentation

https://github.com/arminbiere/cadical/blob/master/src/options.hpp

PySAT Documentation, Release 1.8.dev17

>>> from pysat.solvers import Cadical153
>>> from pysat.examples.genhard import Parity
>>>
>>> cnf = Parity(size=10) # too hard for a SAT solver
>>> c = Cadical153(bootstrap_with=cnf.clauses)
>>>
>>> c.dec_budget(500) # doing at most 500 decisions
>>> print(c.solve_limited()) # making a limited oracle call
None
>>> c.delete()

delete()

Solver destructor, which must be called explicitly if the solver is to be removed. This is not needed inside
an with block.

disable_propagator()

Ask the solver to disable the propagator on the fly. This will it in passive mode, i.e. it will be invoked only
to check assignments found by the solver.

Note: IPASIR-UP related. Cadical195 only.

disconnect_propagator()

Disconnect the previously attached propagator. This will also reset all the variables marked in the solver as
observed by the propagator.

Note: IPASIR-UP related. Cadical195 only.

enable_propagator()

Ask the solver to enable the propagator on the fly. This will put it in active mode.

Note: IPASIR-UP related. Cadical195 only.

enum_models(assumptions=[])
This method can be used to enumerate models of a CNF formula and it performs as a standard Python
iterator. The method can be called without arguments but also with an argument assumptions, which
represents a list of literals to “assume”.

Note that the method expects the list of assumption literals (if any) to contain no duplicate literals. Oth-
erwise, it is not guaranteed to run correctly. As such, a user is recommended to explicitly filter out du-
plicate literals from the assumptions list before calling solve(), solve_limited(), propagate(), or
enum_models().

Warning: Once finished, model enumeration results in the target formula being unsatisfiable. This is
because the enumeration process blocks each previously computed model by adding a new clause until
no more models of the formula exist.

Parameters assumptions (iterable(int)) – a list of assumption literals.

Return type list(int).

1.1. Core PySAT modules 63

PySAT Documentation, Release 1.8.dev17

Example:

>>> with Solver(bootstrap_with=[[-1, 2], [-2, 3]]) as s:
... for m in s.enum_models():
... print(m)
[-1, -2, -3]
[-1, -2, 3]
[-1, 2, 3]
[1, 2, 3]
>>>
>>> with Solver(bootstrap_with=[[-1, 2], [-2, 3]]) as s:
... for m in s.enum_models(assumptions=[1]):
... print(m)
[1, 2, 3]

get_core()

This method is to be used for extracting an unsatisfiable core in the form of a subset of a given set of
assumption literals, which are responsible for unsatisfiability of the formula. This can be done only if the
previous SAT call returned False (UNSAT). Otherwise, None is returned.

Return type list(int) or None.

Usage example:

>>> from pysat.solvers import Minisat22
>>> m = Minisat22()
>>> m.add_clause([-1, 2])
>>> m.add_clause([-2, 3])
>>> m.add_clause([-3, 4])
>>> m.solve(assumptions=[1, 2, 3, -4])
False
>>> print(m.get_core()) # literals 2 and 3 are not in the core
[-4, 1]
>>> m.delete()

get_model()

The method is to be used for extracting a satisfying assignment for a CNF formula given to the solver. A
model is provided if a previous SAT call returned True. Otherwise, None is reported.

Return type list(int) or None.

Example:

>>> from pysat.solvers import Solver
>>> s = Solver()
>>> s.add_clause([-1, 2])
>>> s.add_clause([-1, -2])
>>> s.add_clause([1, -2])
>>> s.solve()
True
>>> print(s.get_model())
[-1, -2]
>>> s.delete()

get_proof()

A DRUP proof can be extracted using this method if the solver was set up to provide a proof. Otherwise,

64 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

the method returns None.

Return type list(str) or None.

Example:

>>> from pysat.solvers import Solver
>>> from pysat.examples.genhard import PHP
>>>
>>> cnf = PHP(nof_holes=3)
>>> with Solver(name='g4', with_proof=True) as g:
... g.append_formula(cnf.clauses)
... g.solve()
False
... print(g.get_proof())
['-8 4 1 0', '-10 0', '-2 0', '-4 0', '-8 0', '-6 0', '0']

get_status()

The result of a previous SAT call is stored in an internal variable and can be later obtained using this method.

Return type Boolean or None.

None is returned if a previous SAT call was interrupted.

ignore(var)
Inform the solver that a given variable is ignored by the propagator attached to it.

Note: IPASIR-UP related. Cadical195 only.

interrupt()

Interrupt the execution of the current limited SAT call (see solve_limited()). Can be used to enforce
time limits using timer objects. The interrupt must be cleared before performing another SAT call (see
clear_interrupt()).

Note that this method can be called if limited SAT calls are made with the option expect_interrupt set
to True.

Behaviour is undefined if used to interrupt a non-limited SAT call (see solve()).

Example:

>>> from pysat.solvers import MinisatGH
>>> from pysat.examples.genhard import PHP
>>> from threading import Timer
>>>
>>> cnf = PHP(nof_holes=20) # PHP20 is too hard for a SAT solver
>>> m = MinisatGH(bootstrap_with=cnf.clauses)
>>>
>>> def interrupt(s):
>>> s.interrupt()
>>>
>>> timer = Timer(10, interrupt, [m])
>>> timer.start()
>>>
>>> print(m.solve_limited(expect_interrupt=True))

(continues on next page)

1.1. Core PySAT modules 65

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

None
>>> m.delete()

is_decision(lit)
Check whether a given literal that is currently observed by the attached propagator is a assigned a value
by branching or by propagation, i.e. whether it is decision or not. In the former case, the method returns
True; otherwise, it returns False.

Note: IPASIR-UP related. Cadical195 only.

new(name='m22', bootstrap_with=None, use_timer=False, **kwargs)
The actual solver constructor invoked from __init__(). Chooses the solver to run, based on its name.
See Solver for the parameters description.

Raises NoSuchSolverError – if there is no solver matching the given name.

nof_clauses()

This method returns the number of clauses currently appearing in the formula given to the solver.

Return type int.

Example:

>>> s = Solver(bootstrap_with=[[-1, 2], [-2, 3]])
>>> s.nof_clauses()
2

nof_vars()

This method returns the number of variables currently appearing in the formula given to the solver.

Return type int.

Example:

>>> s = Solver(bootstrap_with=[[-1, 2], [-2, 3]])
>>> s.nof_vars()
3

observe(var)
Inform the solver that a given variable is observed by the propagator attached to it.

Note: IPASIR-UP related. Cadical195 only.

prop_budget(budget=- 1)
Set limit (i.e. the upper bound) on the number of propagations in the next limited SAT call (see
solve_limited()). The limit value is given as a budget variable and is an integer greater than 0. If
the budget is set to 0 or -1, the upper bound on the number of propagations is disabled.

Parameters budget (int) – the upper bound on the number of propagations.

Example:

66 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

>>> from pysat.solvers import MinisatGH
>>> from pysat.examples.genhard import Parity
>>>
>>> cnf = Parity(size=10) # too hard for a SAT solver
>>> m = MinisatGH(bootstrap_with=cnf.clauses)
>>>
>>> m.prop_budget(100000) # doing at most 100000 propagations
>>> print(m.solve_limited()) # making a limited oracle call
None
>>> m.delete()

propagate(assumptions=[], phase_saving=0)
The method takes a list of assumption literals and does unit propagation of each of these literals consecu-
tively. A Boolean status is returned followed by a list of assigned (assumed and also propagated) literals.
The status is True if no conflict arised during propagation. Otherwise, the status is False. Additionally, a
user may specify an optional argument phase_saving (0 by default) to enable MiniSat-like phase saving.

Note that the method expects the list of assumption literals (if any) to contain no duplicate literals. Oth-
erwise, it is not guaranteed to run correctly. As such, a user is recommended to explicitly filter out du-
plicate literals from the assumptions list before calling solve(), solve_limited(), propagate(), or
enum_models().

Note that only MiniSat-like solvers support this functionality (e.g. Cadical103, class:Cadical153,
Cadical195, and Lingeling do not support it).

Parameters

• assumptions (iterable(int)) – a list of assumption literals.

• phase_saving (int) – enable phase saving (can be 0, 1, and 2).

Return type tuple(bool, list(int)).

Usage example:

>>> from pysat.solvers import Glucose3
>>> from pysat.card import *
>>>
>>> cnf = CardEnc.atmost(lits=range(1, 6), bound=1, encoding=EncType.pairwise)
>>> g = Glucose3(bootstrap_with=cnf.clauses)
>>>
>>> g.propagate(assumptions=[1])
(True, [1, -2, -3, -4, -5])
>>>
>>> g.add_clause([2])
>>> g.propagate(assumptions=[1])
(False, [])
>>>
>>> g.delete()

propagator_active()

Check if the propagator is currently active or passive. In the former case, the method will return True;
otherwise, it will return False.

Note: IPASIR-UP related. Cadical195 only.

1.1. Core PySAT modules 67

PySAT Documentation, Release 1.8.dev17

reset_observed()

Ask the solver to reset all observed variables.

Note: IPASIR-UP related. Cadical195 only.

set_phases(literals=[])
The method takes a list of literals as an argument and sets phases (or MiniSat-like polarities) of the corre-
sponding variables respecting the literals. For example, if a given list of literals is [1, -513], the solver
will try to set variable 𝑥1 to true while setting 𝑥513 to false.

Note that once these preferences are specified, MinisatGH and Lingeling will always respect them
when branching on these variables. However, solvers Glucose3, Glucose4, MapleChrono, MapleCM,
Maplesat, Minisat22, and Minicard can redefine the preferences in any of the following SAT calls due
to the phase saving heuristic.

Also note that Cadical103, Cadical153, and Cadical195 do not support this functionality.

Parameters literals (iterable(int)) – a list of literals.

Usage example:

>>> from pysat.solvers import Glucose3
>>>
>>> g = Glucose3(bootstrap_with=[[1, 2]])
>>> # the formula has 3 models: [-1, 2], [1, -2], [1, 2]
>>>
>>> g.set_phases(literals=[1, 2])
>>> g.solve()
True
>>> g.get_model()
[1, 2]
>>>
>>> g.delete()

solve(assumptions=[])
This method is used to check satisfiability of a CNF formula given to the solver (see methods
add_clause() and append_formula()). Unless interrupted with SIGINT, the method returns either
True or False.

Incremental SAT calls can be made with the use of assumption literals. (Note that the assumptions
argument is optional and disabled by default.)

Note that the method expects the list of assumption literals (if any) to contain no duplicate literals. Oth-
erwise, it is not guaranteed to run correctly. As such, a user is recommended to explicitly filter out du-
plicate literals from the assumptions list before calling solve(), solve_limited(), propagate(), or
enum_models().

Parameters assumptions (iterable(int)) – a list of assumption literals.

Return type Boolean or None.

Example:

>>> from pysat.solvers import Solver
>>> s = Solver(bootstrap_with=[[-1, 2], [-2, 3]])
>>> s.solve()

(continues on next page)

68 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

True
>>> s.solve(assumptions=[1, -3])
False
>>> s.delete()

solve_limited(assumptions=[], expect_interrupt=False)
This method is used to check satisfiability of a CNF formula given to the solver (see methods
add_clause() and append_formula()), taking into account the upper bounds on the number of conflicts
(see conf_budget()) and the number of propagations (see prop_budget()). If the number of conflicts
or propagations is set to be larger than 0 then the following SAT call done with solve_limited() will
not exceed these values, i.e. it will be incomplete. Otherwise, such a call will be identical to solve().

As soon as the given upper bound on the number of conflicts or propagations is reached, the SAT call is
dropped returning None, i.e. unknown. None can also be returned if the call is interrupted by SIGINT.
Otherwise, the method returns True or False.

Note that only MiniSat-like solvers support this functionality (e.g. Cadical103, Cadical153,
Cadical195, and Lingeling do not support it).

Incremental SAT calls can be made with the use of assumption literals. (Note that the assumptions
argument is optional and disabled by default.)

Note that the method expects the list of assumption literals (if any) to contain no duplicate literals. Oth-
erwise, it is not guaranteed to run correctly. As such, a user is recommended to explicitly filter out du-
plicate literals from the assumptions list before calling solve(), solve_limited(), propagate(), or
enum_models().

Note that since SIGINT handling and interrupt() are not configured to work together at this point,
additional input parameter expect_interrupt is assumed to be given, indicating what kind of inter-
ruption may happen during the execution of solve_limited(): whether a SIGINT signal or internal
interrupt(). By default, a SIGINT signal handling is assumed. If expect_interrupt is set to True
and eventually a SIGINT is received, the behavior is undefined.

Parameters

• assumptions (iterable(int)) – a list of assumption literals.

• expect_interrupt (bool) – whether interrupt() will be called

Return type Boolean or None.

Doing limited SAT calls can be of help if it is known that complete SAT calls are too expensive. For
instance, it can be useful when minimizing unsatisfiable cores in MaxSAT (see pysat.examples.RC2.
minimize_core() also shown below).

Also and besides supporting deterministic interruption based on conf_budget() and/or prop_budget(),
limited SAT calls support deterministic and non-deterministic interruption from inside a Python script. See
the interrupt() and clear_interrupt() methods for details.

Usage example:

... # assume that a SAT oracle is set up to contain an unsatisfiable

... # formula, and its core is stored in variable "core"
oracle.conf_budget(1000) # getting at most 1000 conflicts be call

i = 0
while i < len(core):

to_test = core[:i] + core[(i + 1):]
(continues on next page)

1.1. Core PySAT modules 69

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

doing a limited call
if oracle.solve_limited(assumptions=to_test) == False:

core = to_test
else: # True or *unknown*

i += 1

start_mode(warm=False)
Set start mode: either warm or standard. Warm start mode can be beneficial if one is interested in efficient
model enumeration.

Note that warm start mode is disabled in the case of limited solving with “unknown” outcomes. Moreover,
warm start mode may lead to unexpected results in case of assumption-based solving with a varying list of
assumption literals.

Example:

>>> def model_count(solver, formula, vlimit=None, warm_start=False):
... with Solver(name=solver, bootstrap_with=formula, use_timer=True, warm_
→˓start=warm_start) as oracle:
... count = 0
... while oracle.solve() == True:
... model = oracle.get_model()
... if vlimit:
... model = model[:vlimit]
... oracle.add_clause([-l for l in model])
... count += 1
... print('{0} models in {1:.4f}s'.format(count, oracle.time_accum()))
>>>
>>> model_count('mpl', cnf, vlimit=16, warm_start=False)
58651 models in 7.9903s
>>> model_count('mpl', cnf, vlimit=16, warm_start=True)
58651 models in 0.3951s

supports_atmost()

This method can be called to determine whether the solver supports native AtMostK (see pysat.card)
constraints.

Return type bool

A usage example is the following:

>>> s = Solver(name='mc')
>>> s.supports_atmost()
True
>>> # there is support for AtMostK constraints in this solver

time()

Get the time spent when doing the last SAT call. Note that the time is measured only if the use_timer
argument was previously set to True when creating the solver (see Solver for details).

Return type float.

Example usage:

70 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

>>> from pysat.solvers import Solver
>>> from pysat.examples.genhard import PHP
>>>
>>> cnf = PHP(nof_holes=10)
>>> with Solver(bootstrap_with=cnf.clauses, use_timer=True) as s:
... print(s.solve())
False
... print('{0:.2f}s'.format(s.time()))
150.16s

time_accum()

Get the time spent for doing all SAT calls accumulated. Note that the time is measured only if the
use_timer argument was previously set to True when creating the solver (see Solver for details).

Return type float.

Example usage:

>>> from pysat.solvers import Solver
>>> from pysat.examples.genhard import PHP
>>>
>>> cnf = PHP(nof_holes=10)
>>> with Solver(bootstrap_with=cnf.clauses, use_timer=True) as s:
... print(s.solve(assumptions=[1]))
False
... print('{0:.2f}s'.format(s.time()))
1.76s
... print(s.solve(assumptions=[-1]))
False
... print('{0:.2f}s'.format(s.time()))
113.58s
... print('{0:.2f}s'.format(s.time_accum()))
115.34s

class pysat.solvers.SolverNames

This class serves to determine the solver requested by a user given a string name. This allows for using several
possible names for specifying a solver.

cadical103 = ('cd', 'cd103', 'cdl', 'cdl103', 'cadical103')
cadical153 = ('cd15', 'cd153', 'cdl15', 'cdl153', 'cadical153')
cadical195 = ('cd19', 'cd195', 'cdl19', 'cdl195', 'cadical195')
cryptosat = ('cms', 'cms5', 'crypto', 'crypto5', 'cryptominisat', 'cryptominisat5
→˓')
gluecard3 = ('gc3', 'gc30', 'gluecard3', 'gluecard30')
gluecard41 = ('gc4', 'gc41', 'gluecard4', 'gluecard41')
glucose3 = ('g3', 'g30', 'glucose3', 'glucose30')
glucose4 = ('g4', 'g41', 'glucose4', 'glucose41')
glucose42 = ('g42', 'g421', 'glucose42', 'glucose421')
lingeling = ('lgl', 'lingeling')
maplechrono = ('mcb', 'chrono', 'maplechrono')
maplecm = ('mcm', 'maplecm')
maplesat = ('mpl', 'maple', 'maplesat')
mergesat3 = ('mg3', 'mgs3', 'mergesat3', 'mergesat30')
minicard = ('mc', 'mcard', 'minicard')

(continues on next page)

1.1. Core PySAT modules 71

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

minisat22 = ('m22', 'msat22', 'minisat22')
minisatgh = ('mgh', 'msat-gh', 'minisat-gh')

As a result, in order to select Glucose3, a user can specify the solver’s name: either 'g3', 'g30', 'glucose3',
or 'glucose30'. Note that the capitalized versions of these names are also allowed.

1.2 Supplementary examples package

1.2.1 Fu&Malik MaxSAT algorithm (pysat.examples.fm)

List of classes

FM A non-incremental implementation of the FM
(Fu&Malik, or WMSU1) algorithm.

Module description

This module implements a variant of the seminal core-guided MaxSAT algorithm originally proposed by1 and then
improved and modified further in2345. Namely, the implementation follows the WMSU1 variant5 of the algorithm
extended to the case of weighted partial formulas.

The implementation can be used as an executable (the list of available command-line options can be shown using fm.py
-h) in the following way:

$ xzcat formula.wcnf.xz
p wcnf 3 6 4
1 1 0
1 2 0
1 3 0
4 -1 -2 0
4 -1 -3 0
4 -2 -3 0

$ fm.py -c cardn -s glucose3 -vv formula.wcnf.xz
c cost: 1; core sz: 2
c cost: 2; core sz: 3
s OPTIMUM FOUND
o 2
v -1 -2 3 0
c oracle time: 0.0001

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.
1 Zhaohui Fu, Sharad Malik. On Solving the Partial MAX-SAT Problem. SAT 2006. pp. 252-265
2 Joao Marques-Silva, Jordi Planes. On Using Unsatisfiability for Solving Maximum Satisfiability. CoRR abs/0712.1097. 2007
3 Joao Marques-Silva, Vasco M. Manquinho. Towards More Effective Unsatisfiability-Based Maximum Satisfiability Algorithms. SAT 2008. pp.

225-230
4 Carlos Ansótegui, Maria Luisa Bonet, Jordi Levy. Solving (Weighted) Partial MaxSAT through Satisfiability Testing. SAT 2009. pp. 427-440
5 Vasco M. Manquinho, Joao Marques Silva, Jordi Planes. Algorithms for Weighted Boolean Optimization. SAT 2009. pp. 495-508

72 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

>>> from pysat.examples.fm import FM
>>> from pysat.formula import WCNF
>>>
>>> wcnf = WCNF(from_file='formula.wcnf.xz')
>>>
>>> fm = FM(wcnf, verbose=0)
>>> fm.compute() # set of hard clauses should be satisfiable
True
>>> print(fm.cost) # cost of MaxSAT solution should be 2
>>> 2
>>> print(fm.model)
[-1, -2, 3]

Module details

class examples.fm.FM(formula, enc=0, solver='m22', verbose=1)
A non-incremental implementation of the FM (Fu&Malik, or WMSU1) algorithm. The algorithm (see details
inPage 72, 5) is core-guided, i.e. it solves maximum satisfiability with a series of unsatisfiability oracle calls, each
producing an unsatisfiable core. The clauses involved in an unsatisfiable core are relaxed and a new AtMost1
constraint on the corresponding relaxation variables is added to the formula. The process gets a bit more sophis-
ticated in the case of weighted formulas because of the clause weight splitting technique.

The constructor of FM objects receives a target WCNF MaxSAT formula, an identifier of the cardinality encod-
ing to use, a SAT solver name, and a verbosity level. Note that the algorithm uses the pairwise (see card.
EncType) cardinality encoding by default, while the default SAT solver is MiniSat22 (referred to as 'm22', see
SolverNames for details). The default verbosity level is 1.

Parameters

• formula (WCNF) – input MaxSAT formula

• enc (int) – cardinality encoding to use

• solver (str) – name of SAT solver

• verbose (int) – verbosity level

_compute()

This method implements WMSU1 algorithm. The method is essentially a loop, which at each iteration
calls the SAT oracle to decide whether the working formula is satisfiable. If it is, the method derives a
model (stored in variable self.model) and returns. Otherwise, a new unsatisfiable core of the formula is
extracted and processed (see treat_core()), and the algorithm proceeds.

compute()

Compute a MaxSAT solution. First, the method checks whether or not the set of hard clauses is satisfiable.
If not, the method returns False. Otherwise, add soft clauses to the oracle and call the MaxSAT algorithm
(see _compute()).

Note that the soft clauses are added to the oracles after being augmented with additional selector literals.
The selectors literals are then used as assumptions when calling the SAT oracle and are needed for extracting
unsatisfiable cores.

delete()

Explicit destructor of the internal SAT oracle.

1.2. Supplementary examples package 73

PySAT Documentation, Release 1.8.dev17

init(with_soft=True)
The method for the SAT oracle initialization. Since the oracle is is used non-incrementally, it is reinitialized
at every iteration of the MaxSAT algorithm (see reinit()). An input parameter with_soft (False by
default) regulates whether or not the formula’s soft clauses are copied to the oracle.

Parameters with_soft (bool) – copy formula’s soft clauses to the oracle or not

oracle_time()

Method for calculating and reporting the total SAT solving time.

reinit()

This method calls delete() and init() to reinitialize the internal SAT oracle. This is done at every
iteration of the MaxSAT algorithm.

relax_core()

Relax and bound the core.

After unsatisfiable core splitting, this method is called. If the core contains only one clause, i.e. this clause
cannot be satisfied together with the hard clauses of the formula, the formula gets augmented with the
negation of the clause (see remove_unit_core()).

Otherwise (if the core contains more than one clause), every clause 𝑐 of the core is relaxed. This means a
new relaxation literal is added to the clause, i.e. 𝑐← 𝑐∨ 𝑟, where 𝑟 is a fresh (unused) relaxation variable.
After the clauses get relaxed, a new cardinality encoding is added to the formula enforcing the sum of the
new relaxation variables to be not greater than 1,

∑︀
𝑐∈𝜑 𝑟 ≤ 1, where 𝜑 denotes the unsatisfiable core.

remove_unit_core()

If an unsatisfiable core contains only one clause 𝑐, this method is invoked to add a bunch of new unit size
hard clauses. As a result, the SAT oracle gets unit clauses (¬𝑙) for all literals 𝑙 in clause 𝑐.

split_core(minw)
Split clauses in the core whenever necessary.

Given a list of soft clauses in an unsatisfiable core, the method is used for splitting clauses whose weights
are greater than the minimum weight of the core, i.e. the minw value computed in treat_core(). Each
clause (𝑐∨¬𝑠, 𝑤), s.t. 𝑤 > 𝑚𝑖𝑛𝑤 and 𝑠 is its selector literal, is split into clauses (1) clause (𝑐∨¬𝑠,𝑚𝑖𝑛𝑤)
and (2) a residual clause (𝑐 ∨ ¬𝑠′, 𝑤 −𝑚𝑖𝑛𝑤). Note that the residual clause has a fresh selector literal 𝑠′
different from 𝑠.

Parameters minw (int) – minimum weight of the core

treat_core()

Now that the previous SAT call returned UNSAT, a new unsatisfiable core should be extracted and relaxed.
Core extraction is done through a call to the pysat.solvers.Solver.get_core() method, which re-
turns a subset of the selector literals deemed responsible for unsatisfiability.

After the core is extracted, its minimum weight minw is computed, i.e. it is the minimum weight among the
weights of all soft clauses involved in the core (seePage 72, 5). Note that the cost of the MaxSAT solution is
incremented by minw.

Clauses that have weight larger than minw are split (see split_core()). Afterwards, all clauses of the
unsatisfiable core are relaxed (see relax_core()).

74 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

1.2.2 Hard formula generator (pysat.examples.genhard)

List of classes

CB Mutilated chessboard principle (CB).
GT Generator of ordering (or greater than, GT) principle

formulas.
PAR Generator of the parity principle (PAR) formulas.
PHP Generator of 𝑘 pigeonhole principle (𝑘-PHP) formulas.

Module description

This module is designed to provide a few examples illustrating how PySAT can be used for encoding practical prob-
lems into CNF formulas. These include combinatorial principles that are widely studied from the propositional proof
complexity perspective. Namely, encodings for the following principles are implemented: pigeonhole principle (PHP)1,
ordering (greater-than) principle (GT)2, mutilated chessboard principle (CB)3, and parity principle (PAR)4.

The module can be used as an executable (the list of available command-line options can be shown using genhard.py
-h) in the following way

$ genhard.py -t php -n 3 -v
c PHP formula for 4 pigeons and 3 holes
c (pigeon, hole) pair: (1, 1); bool var: 1
c (pigeon, hole) pair: (1, 2); bool var: 2
c (pigeon, hole) pair: (1, 3); bool var: 3
c (pigeon, hole) pair: (2, 1); bool var: 4
c (pigeon, hole) pair: (2, 2); bool var: 5
c (pigeon, hole) pair: (2, 3); bool var: 6
c (pigeon, hole) pair: (3, 1); bool var: 7
c (pigeon, hole) pair: (3, 2); bool var: 8
c (pigeon, hole) pair: (3, 3); bool var: 9
c (pigeon, hole) pair: (4, 1); bool var: 10
c (pigeon, hole) pair: (4, 2); bool var: 11
c (pigeon, hole) pair: (4, 3); bool var: 12
p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0
10 11 12 0
-1 -4 0
-1 -7 0
-1 -10 0
-4 -7 0
-4 -10 0
-7 -10 0
-2 -5 0
-2 -8 0

(continues on next page)

1 Stephen A. Cook, Robert A. Reckhow. The Relative Efficiency of Propositional Proof Systems. J. Symb. Log. 44(1). 1979. pp. 36-50
2 Balakrishnan Krishnamurthy. Short Proofs for Tricky Formulas. Acta Informatica 22(3). 1985. pp. 253-275
3 Michael Alekhnovich. Mutilated Chessboard Problem Is Exponentially Hard For Resolution. Theor. Comput. Sci. 310(1-3). 2004. pp.

513-525
4 Miklós Ajtai. Parity And The Pigeonhole Principle. Feasible Mathematics. 1990. pp. 1–24

1.2. Supplementary examples package 75

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

-2 -11 0
-5 -8 0
-5 -11 0
-8 -11 0
-3 -6 0
-3 -9 0
-3 -12 0
-6 -9 0
-6 -12 0
-9 -12 0

Alternatively, each of the considered problem encoders can be accessed with the use of the standard import interface
of Python, e.g.

>>> from pysat.examples.genhard import PHP
>>>
>>> cnf = PHP(3)
>>> print(cnf.nv, len(cnf.clauses))
12 22

Given this example, observe that classes PHP, GT, CB, and PAR inherit from class pysat.formula.CNF and, thus, their
corresponding clauses can accessed through variable .clauses.

Module details

class examples.genhard.CB(*args, **kwargs)
Mutilated chessboard principle (CB). Given an integer 𝑛, the principle states that it is impossible to cover a
chessboard of size 2𝑛 · 2𝑛 by domino tiles if two diagonally opposite corners of the chessboard are removed.

Note that the chessboard has 4𝑛2 − 2 cells. Introduce a Boolean variable 𝑥𝑖𝑗 for 𝑖, 𝑗 ∈ [4𝑛2 − 2] s.t. cells 𝑖
and 𝑗 are adjacent (no variables are introduced for pairs of non-adjacent cells). CB formulas comprise clauses
(1) (¬𝑥𝑗𝑖 ∨ ¬𝑥𝑘𝑖) for every 𝑖, 𝑗 ̸= 𝑘 meaning that no more than one adjacent cell can be paired with the current
one; and (2) (∨𝑗∈Adj(𝑖)𝑥𝑖𝑗) ∀𝑖 enforcing that every cell 𝑖 should be paired with at least one adjacent cell.

Clearly, since the two diagonal corners are removed, the formula is unsatisfiable. Also note the following. As-
suming that the number of black cells is larger than the number of the white ones, CB formulas are unsatisfiable
even if only a half of the formula is present, e.g. when AtMost1 constraints are formulated only for the white
cells while the AtLeast1 constraints are formulated only for the black cells. Depending on the value of parameter
exhaustive the encoder applies the complete or partial formulation of the problem.

Mutilated chessboard principle is known to be hard for resolution?.

Parameters

• size (int) – problem size (𝑛)

• exhaustive (bool) – encode the problem exhaustively

• topv (int) – current top variable identifier

• verb (bool) – defines whether or not the encoder is verbose

Returns object of class pysat.formula.CNF.

class examples.genhard.GT(*args, **kwargs)
Generator of ordering (or greater than, GT) principle formulas. Given an integer parameter 𝑛, the principle states
that any partial order on the set {1, 2, . . . , 𝑛} must have a maximal element.

76 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

Assume variable 𝑥𝑖𝑗 , for 𝑖, 𝑗 ∈ [𝑛], 𝑖 ̸= 𝑗, denotes the fact that 𝑖 ≻ 𝑗. Clauses (¬𝑥𝑖𝑗 ∨¬𝑥𝑗𝑖) and (¬𝑥𝑖𝑗 ∨¬𝑥𝑗𝑘 ∨
𝑥𝑖𝑘) ensure that the relation ≻ is anti-symmetric and transitive. As a result, ≻ is a partial order on [𝑛]. The
additional requirement that each element 𝑖 has a successor in [𝑛] ∖ {𝑖} represented a clause (∨𝑗 ̸=𝑖𝑥𝑗𝑖) makes the
formula unsatisfiable.

GT formulas were originally conjectured? to be hard for resolution. However,5 proved the existence of a polyno-
mial size resolution refutation for GT formulas.

Parameters

• size (int) – number of elements (𝑛)

• topv (int) – current top variable identifier

• verb (bool) – defines whether or not the encoder is verbose

Returns object of class pysat.formula.CNF.

class examples.genhard.PAR(*args, **kwargs)
Generator of the parity principle (PAR) formulas. Given an integer parameter 𝑛, the principle states that no graph
on 2𝑛+ 1 nodes consists of a complete perfect matching.

The encoding of the parity principle uses
(︀
2𝑛+1

2

)︀
variables 𝑥𝑖𝑗 , 𝑖 ̸= 𝑗. If variable 𝑥𝑖𝑗 is true, then there is an

edge between nodes 𝑖 and 𝑗. The formula consists of the following clauses: (∨𝑗 ̸=𝑖𝑥𝑖𝑗) for every 𝑖 ∈ [2𝑛 + 1],
and (¬𝑥𝑖𝑗 ∨ ¬𝑥𝑘𝑗) for all distinct 𝑖, 𝑗, 𝑘 ∈ [2𝑛+ 1].

The parity principle is known to be hard for resolutionPage 75, 4.

Parameters

• size (int) – problem size (𝑛)

• topv (int) – current top variable identifier

• verb (bool) – defines whether or not the encoder is verbose

Returns object of class pysat.formula.CNF.

class examples.genhard.PHP(*args, **kwargs)
Generator of 𝑘 pigeonhole principle (𝑘-PHP) formulas. Given integer parameters 𝑚 and 𝑘, the 𝑘 pigeonhole
principle states that if 𝑘 ·𝑚+ 1 pigeons are distributes by 𝑚 holes, then at least one hole contains more than 𝑘
pigeons.

Note that if 𝑘 is 1, the principle degenerates to the formulation of the original pigeonhole principle stating that
𝑚+ 1 pigeons cannot be distributed by 𝑚 holes.

Assume that a Boolean variable 𝑥𝑖𝑗 encodes that pigeon 𝑖 resides in hole 𝑗. Then a PHP formula can be seen
as a conjunction:

⋀︀𝑘·𝑚+1
𝑖=1 AtLeast1(𝑥𝑖1, . . . , 𝑥𝑖𝑚) ∧

⋀︀𝑚
𝑗=1 AtMost𝑘(𝑥1𝑗 , . . . , 𝑥𝑘·𝑚+1,𝑗). Here each AtLeast1

constraint forces every pigeon to be placed into at least one hole while each AtMost𝑘 constraint allows the
corresponding hole to have at most 𝑘 pigeons. The overall PHP formulas are unsatisfiable.

PHP formulas are well-known6 to be hard for resolution.

Parameters

• nof_holes (int) – number of holes (𝑛)

• kval (int) – multiplier 𝑘

• topv (int) – current top variable identifier

• verb (bool) – defines whether or not the encoder is verbose
5 Gunnar Stålmarck. Short Resolution Proofs for a Sequence of Tricky Formulas. Acta Informatica. 33(3). 1996. pp. 277-280
6 Armin Haken. The Intractability of Resolution. Theor. Comput. Sci. 39. 1985. pp. 297-308

1.2. Supplementary examples package 77

PySAT Documentation, Release 1.8.dev17

Returns object of class pysat.formula.CNF.

1.2.3 Minimum/minimal hitting set solver (pysat.examples.hitman)

List of classes

Hitman A cardinality-/subset-minimal hitting set enumerator.

Module description

A SAT-based implementation of an implicit minimal hitting set1 enumerator. The implementation is capable of com-
puting/enumerating cardinality- and subset-minimal hitting sets of a given set of sets. Cardinality-minimal hitting set
enumeration can be seen as ordered (sorted by size) subset-minimal hitting enumeration.

The minimal hitting set problem is trivially formulated as a MaxSAT formula in WCNF, as follows. Assume 𝐸 =
{𝑒1, . . . , 𝑒𝑛} to be a universe of elements. Also assume there are 𝑘 sets to hit: 𝑠𝑖 = {𝑒𝑖,1, . . . , 𝑒𝑖,𝑗𝑖} s.t. 𝑒𝑖,𝑙 ∈ 𝐸.
Every set 𝑠𝑖 = {𝑒𝑖,1, . . . , 𝑒𝑖,𝑗𝑖} is translated into a hard clause (𝑒𝑖,1 ∨ . . .∨ 𝑒𝑖,𝑗𝑖). This results in the set of hard clauses
having size 𝑘. The set of soft clauses comprises unit clauses of the form (¬𝑒𝑗) s.t. 𝑒𝑗 ∈ 𝐸, each having weight 1.

Taking into account this problem formulation as MaxSAT, ordered hitting enumeration is done with the use of the
state-of-the-art MaxSAT solver called RC2234 while unordered hitting set enumeration is done through the minimal
correction subset (MCS) enumeration, e.g. using the LBX-5 or MCSls-like6 MCS enumerators.

Note that this implementation additionally supports pure SAT-based minimal hitting set enumeration with the use of
preferred variable polarity setting following the approach of7.

Hitman supports hitting set enumeration in the implicit manner, i.e. when sets to hit can be added on the fly as well as
hitting sets can be blocked on demand.

An example usage of Hitman through the Python import interface is shown below. Here we target unordered subset-
minimal hitting set enumeration.

>>> from pysat.examples.hitman import Hitman
>>>
>>> h = Hitman(solver='m22', htype='lbx')
>>> # adding sets to hit
>>> h.hit([1, 2, 3])
>>> h.hit([1, 4])
>>> h.hit([5, 6, 7])
>>>
>>> h.get()
[1, 5]
>>>
>>> h.block([1, 5])
>>>

(continues on next page)

1 Erick Moreno-Centeno, Richard M. Karp. The Implicit Hitting Set Approach to Solve Combinatorial Optimization Problems with an Application
to Multigenome Alignment. Operations Research 61(2). 2013. pp. 453-468

2 António Morgado, Carmine Dodaro, Joao Marques-Silva. Core-Guided MaxSAT with Soft Cardinality Constraints. CP 2014. pp. 564-573
3 António Morgado, Alexey Ignatiev, Joao Marques-Silva. MSCG: Robust Core-Guided MaxSAT Solving. JSAT 9. 2014. pp. 129-134
4 Alexey Ignatiev, António Morgado, Joao Marques-Silva. RC2: a Python-based MaxSAT Solver. MaxSAT Evaluation 2018. p. 22
5 Carlos Mencía, Alessandro Previti, Joao Marques-Silva. Literal-Based MCS Extraction. IJCAI. 2015. pp. 1973-1979
6 Joao Marques-Silva, Federico Heras, Mikolás Janota, Alessandro Previti, Anton Belov. On Computing Minimal Correction Subsets. IJCAI.

2013. pp. 615-622
7 Enrico Giunchiglia, Marco Maratea. Solving Optimization Problems with DLL. ECAI 2006. pp. 377-381

78 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> h.get()
[2, 4, 5]
>>>
>>> h.delete()

Enumerating cardinality-minimal hitting sets can be done as follows:

>>> from pysat.examples.hitman import Hitman
>>>
>>> sets = [[1, 2, 3], [1, 4], [5, 6, 7]]
>>> with Hitman(bootstrap_with=sets, htype='sorted') as hitman:
... for hs in hitman.enumerate():
... print(hs)
...
[1, 5]
[1, 6]
[1, 7]
[3, 4, 7]
[2, 4, 7]
[3, 4, 6]
[3, 4, 5]
[2, 4, 6]
[2, 4, 5]

Finally, implicit hitting set enumeration can be used in practical problem solving. As an example, let us show the basic
flow of a MaxHS-like8 algorithm for MaxSAT:

>>> from pysat.examples.hitman import Hitman
>>> from pysat.solvers import Solver
>>>
>>> hitman = Hitman(htype='sorted')
>>> oracle = Solver()
>>>
>>> # here we assume that the SAT oracle
>>> # is initialized with a MaxSAT formula,
>>> # whose soft clauses are extended with
>>> # selector literals stored in "sels"
>>> while True:
... hs = hitman.get() # hitting the set of unsatisfiable cores
... ts = set(sels).difference(set(hs)) # soft clauses to try
...
... if oracle.solve(assumptions=ts):
... print('s OPTIMUM FOUND')
... print('o', len(hs))
... break
... else:
... core = oracle.get_core()
... hitman.hit(core)

8 Jessica Davies, Fahiem Bacchus. Solving MAXSAT by Solving a Sequence of Simpler SAT Instances. CP 2011. pp. 225-239

1.2. Supplementary examples package 79

PySAT Documentation, Release 1.8.dev17

Module details

class examples.hitman.Atom(obj, sign=True)
Atoms are elementary (signed) objects necessary when dealing with hitting sets subject to hard constraints.

class examples.hitman.Hitman(bootstrap_with=[], weights=None, subject_to=[], solver='g3', htype='sorted',
mxs_adapt=False, mxs_exhaust=False, mxs_minz=False, mxs_trim=0,
mcs_usecld=False)

A cardinality-/subset-minimal hitting set enumerator. The enumerator can be set up to use either a MaxSAT solver
RC2 or an MCS enumerator (either LBX or MCSls). In the former case, the hitting sets enumerated are ordered
by size (smallest size hitting sets are computed first), i.e. sorted. In the latter case, subset-minimal hitting are
enumerated in an arbitrary order, i.e. unsorted. Additionally, Hitman supports pure SAT-based minimal hitting
set enumeration with the use of polarity preferences.

This is handled with the use of parameter htype, which is set to be 'sorted' by default. The MaxSAT-based
enumerator can be chosen by setting htype to one of the following values: 'maxsat', 'mxsat', or 'rc2'.
Alternatively, by setting it to 'mcs' or 'lbx', a user can enforce using the LBX MCS enumerator. If htype is
set to 'mcsls', the MCSls enumerator is used. Finally, value 'sat' can be given, in which case minimal hitting
set enumeration will performed by means of a SAT solver (can be either MiniSat-GH, or Lingeling, or CaDiCaL
153) with polarity setting.

In either case, unless pure SAT-based hitting set enumeration is selected, an underlying problem solver can use
a SAT oracle specified as an input parameter solver. The default SAT solver is Glucose3 (specified as g3, see
SolverNames for details). For SAT-based enumeration, MinisatGH is used as an underlying SAT solver.

Objects of class Hitman can be bootstrapped with an iterable of iterables, e.g. a list of lists. This is handled
using the bootstrap_with parameter. Each set to hit can comprise elements of any type, e.g. integers, strings
or objects of any Python class, as well as their combinations. The bootstrapping phase is done in init().

Another optional parameter subject_to can be used to specify arbitrary hard constraints that must be respected
when computing hitting sets of the given sets. Note that subject_to should be an iterable containing pure
clauses and/or native AtMostK constraints. Note that native cardinality constraints supported only by MiniCard-
like solvers. Finally, note that these hard constraints must be defined over the set of signed atomic objects, i.e.
instances of class Atom .

A few other optional parameters include the possible options for RC2 as well as for LBX- and MCSls-like MCS
enumerators that control the behaviour of the underlying solvers.

Parameters

• bootstrap_with (iterable(iterable(obj))) – input set of sets to hit

• weights (dict(obj)) – a mapping from objects to their weights (if weighted)

• subject_to (iterable(iterable(Atom))) – hard constraints (either clauses or native
AtMostK constraints)

• solver (str) – name of SAT solver

• htype (str) – enumerator type

• mxs_adapt (bool) – detect and process AtMost1 constraints in RC2

• mxs_exhaust (bool) – apply unsatisfiable core exhaustion in RC2

• mxs_minz (bool) – apply heuristic core minimization in RC2

• mxs_trim (int) – trim unsatisfiable cores at most this number of times

• mcs_usecld (bool) – use clause-D heuristic in the MCS enumerator

80 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

add_hard(clause, weights=None)
Add a hard constraint, which can be either a pure clause or an AtMostK constraint.

Note that an optional parameter that can be passed to this method is weights, which contains a mapping
the objects under question into weights. Also note that the weight of an object must not change from one
call of hit() to another.

Parameters

• clause (iterable(obj)) – hard constraint (either a clause or a native AtMostK con-
straint)

• weights (dict(obj)) – a mapping from objects to weights

block(to_block, weights=None)
The method serves for imposing a constraint forbidding the hitting set solver to compute a given hitting set.
Each set to block is encoded as a hard clause in the MaxSAT problem formulation, which is then added to
the underlying oracle.

Note that an optional parameter that can be passed to this method is weights, which contains a mapping
the objects under question into weights. Also note that the weight of an object must not change from one
call of hit() to another.

Parameters

• to_block (iterable(obj)) – a set to block

• weights (dict(obj)) – a mapping from objects to weights

delete()

Explicit destructor of the internal hitting set oracle.

enumerate()

The method can be used as a simple iterator computing and blocking the hitting sets on the fly. It essentially
calls get() followed by block(). Each hitting set is reported as a list of objects in the original problem
domain, i.e. it is mapped back from the solutions over Boolean variables computed by the underlying oracle.

Return type list(obj)

get()

This method computes and returns a hitting set. The hitting set is obtained using the underlying oracle
operating the MaxSAT problem formulation. The computed solution is mapped back to objects of the
problem domain.

Return type list(obj)

hit(to_hit, weights=None)
This method adds a new set to hit to the hitting set solver. This is done by translating the input iterable of
objects into a list of Boolean variables in the MaxSAT problem formulation.

Note that an optional parameter that can be passed to this method is weights, which contains a mapping
the objects under question into weights. Also note that the weight of an object must not change from one
call of hit() to another.

Parameters

• to_hit (iterable(obj)) – a new set to hit

• weights (dict(obj)) – a mapping from objects to weights

1.2. Supplementary examples package 81

PySAT Documentation, Release 1.8.dev17

init(bootstrap_with, weights=None, subject_to=[])
This method serves for initializing the hitting set solver with a given list of sets to hit. Concretely, the hitting
set problem is encoded into partial MaxSAT as outlined above, which is then fed either to a MaxSAT solver
or an MCS enumerator.

An additional optional parameter is weights, which can be used to specify non-unit weights for the target
objects in the sets to hit. This only works if 'sorted' enumeration of hitting sets is applied.

Another optional parameter is available, namely, subject_to. It can be used to specify arbitrary hard
constraints that must be respected when computing hitting sets of the given sets. Note that subject_to
should be an iterable containing pure clauses and/or native AtMostK constraints. Finally, note that these
hard constraints must be defined over the set of signed atomic objects, i.e. instances of class Atom .

Parameters

• bootstrap_with (iterable(iterable(obj))) – input set of sets to hit

• weights (dict(obj)) – weights of the objects in case the problem is weighted

• subject_to (iterable(iterable(Atom))) – hard constraints (either clauses or native
AtMostK constraints)

oracle_time()

Report the total SAT solving time.

switch_phase()

If a pure SAT-based hitting set enumeration is used, it is possible to instruct it to switch from enumerating
target sets to enumerating dual sets, by polarity switching. This is what this method enables a user to do.

1.2.4 LBX-like MCS enumerator (pysat.examples.lbx)

List of classes

LBX LBX-like algorithm for computing MCSes.

Module description

This module implements a prototype of the LBX algorithm for the computation of a minimal correction subset (MCS)
and/or MCS enumeration. The LBX abbreviation stands for literal-based MCS extraction algorithm, which was pro-
posed in1. Note that this prototype does not follow the original low-level implementation of the corresponding MCS
extractor available online (compared to our prototype, the low-level implementation has a number of additional heuris-
tics used). However, it implements the LBX algorithm for partial MaxSAT formulas, as described in1.

The implementation can be used as an executable (the list of available command-line options can be shown using
lbx.py -h) in the following way:

$ xzcat formula.wcnf.xz
p wcnf 3 6 4
1 1 0
1 2 0
1 3 0
4 -1 -2 0
4 -1 -3 0

(continues on next page)

1 Carlos Mencia, Alessandro Previti, Joao Marques-Silva. Literal-Based MCS Extraction. IJCAI 2015. pp. 1973-1979

82 Chapter 1. API documentation

https://reason.di.fc.ul.pt/wiki/doku.php?id=lbx

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

4 -2 -3 0

$ lbx.py -d -e all -s glucose3 -vv formula.wcnf.xz
c MCS: 1 3 0
c cost: 2
c MCS: 2 3 0
c cost: 2
c MCS: 1 2 0
c cost: 2
c oracle time: 0.0002

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.lbx import LBX
>>> from pysat.formula import WCNF
>>>
>>> wcnf = WCNF(from_file='formula.wcnf.xz')
>>>
>>> lbx = LBX(wcnf, use_cld=True, solver_name='g3')
>>> for mcs in lbx.enumerate():
... lbx.block(mcs)
... print(mcs)
[1, 3]
[2, 3]
[1, 2]

Module details

class examples.lbx.LBX(formula, use_cld=False, solver_name='m22', use_timer=False)
LBX-like algorithm for computing MCSes. Given an unsatisfiable partial CNF formula, i.e. formula in the WCNF
format, this class can be used to compute a given number of MCSes of the formula. The implementation follows
the LBX algorithm description inPage 82, 1. It can use any SAT solver available in PySAT. Additionally, the “clause
𝐷” heuristic can be used when enumerating MCSes.

The default SAT solver to use is m22 (see SolverNames). The “clause 𝐷” heuristic is disabled by default, i.e.
use_cld is set to False. Internal SAT solver’s timer is also disabled by default, i.e. use_timer is False.

Parameters

• formula (WCNF) – unsatisfiable partial CNF formula

• use_cld (bool) – whether or not to use “clause 𝐷”

• solver_name (str) – SAT oracle name

• use_timer (bool) – whether or not to use SAT solver’s timer

_compute()

The main method of the class, which computes an MCS given its over-approximation. The over-
approximation is defined by a model for the hard part of the formula obtained in compute().

The method is essentially a simple loop going over all literals unsatisfied by the previous model, i.e. the
literals of self.setd and checking which literals can be satisfied. This process can be seen a refinement of
the over-approximation of the MCS. The algorithm follows the pseudo-code of the LBX algorithm presented
inPage 82, 1.

1.2. Supplementary examples package 83

PySAT Documentation, Release 1.8.dev17

Additionally, if LBX was constructed with the requirement to make “clause 𝐷” calls, the method calls
do_cld_check() at every iteration of the loop using the literals of self.setd not yet checked, as the
contents of “clause 𝐷”.

_filter_satisfied(update_setd=False)
This method extracts a model provided by the previous call to a SAT oracle and iterates over all soft clauses
checking if each of is satisfied by the model. Satisfied clauses are marked accordingly while the literals
of the unsatisfied clauses are kept in a list called setd, which is then used to refine the correction set (see
_compute(), and do_cld_check()).

Optional Boolean parameter update_setd enforces the method to update variable self.setd. If this
parameter is set to False, the method only updates the list of satisfied clauses, which is an under-
approximation of a maximal satisfiable subset (MSS).

Parameters update_setd (bool) – whether or not to update setd

_map_extlit(l)
Map an external variable to an internal one if necessary.

This method is used when new clauses are added to the formula incrementally, which may result in intro-
ducing new variables clashing with the previously used clause selectors. The method makes sure no clash
occurs, i.e. it maps the original variables used in the new problem clauses to the newly introduced auxiliary
variables (see add_clause()).

Given an integer literal, a fresh literal is returned. The returned integer has the same sign as the input literal.

Parameters l (int) – literal to map

Return type int

_satisfied(cl, model)
Given a clause (as an iterable of integers) and an assignment (as a list of integers), this method checks
whether or not the assignment satisfies the clause. This is done by a simple clause traversal. The method
is invoked from _filter_satisfied().

Parameters

• cl (iterable(int)) – a clause to check

• model (list(int)) – an assignment

Return type bool

add_clause(clause, soft=False)
The method for adding a new hard of soft clause to the problem formula. Although the input formula is to
be specified as an argument of the constructor of LBX , adding clauses may be helpful when enumerating
MCSes of the formula. This way, the clauses are added incrementally, i.e. on the fly.

The clause to add can be any iterable over integer literals. The additional Boolean parameter soft can be
set to Truemeaning the the clause being added is soft (note that parameter soft is set to False by default).

Also note that besides pure clauses, the method can also expect native cardinality constraints represented
as a pair (lits, bound). Only hard cardinality constraints can be added.

Parameters

• clause (iterable(int)) – a clause to add

• soft (bool) – whether or not the clause is soft

84 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

block(mcs)
Block a (previously computed) MCS. The MCS should be given as an iterable of integers. Note that this
method is not automatically invoked from enumerate() because a user may want to block some of the
MCSes conditionally depending on the needs. For example, one may want to compute disjoint MCSes
only in which case this standard blocking is not appropriate.

Parameters mcs (iterable(int)) – an MCS to block

compute(enable=[])
Compute and return one solution. This method checks whether the hard part of the formula is satisfiable,
i.e. an MCS can be extracted. If the formula is satisfiable, the model computed by the SAT call is used as
an over-approximation of the MCS in the method _compute() invoked here, which implements the LBX
algorithm.

An MCS is reported as a list of integers, each representing a soft clause index (the smallest index is 1).

An optional input parameter is enable, which represents a sequence (normally a list) of soft clause indices
that a user would prefer to enable/satisfy. Note that this may result in an unsatisfiable oracle call, in which
case None will be reported as solution. Also, the smallest clause index is assumed to be 1.

Parameters enable (iterable(int)) – a sequence of clause ids to enable

Return type list(int)

delete()

Explicit destructor of the internal SAT oracle.

do_cld_check(cld)
Do the “clause 𝐷” check. This method receives a list of literals, which serves a “clause 𝐷”2, and checks
whether the formula conjoined with 𝐷 is satisfiable.

If clause 𝐷 cannot be satisfied together with the formula, then negations of all of its literals are backbones
of the formula and the LBX algorithm can stop. Otherwise, the literals satisfied by the new model refine
the MCS further.

Every time the method is called, a new fresh selector variable 𝑠 is introduced, which augments the current
clause𝐷. The SAT oracle then checks if clause (𝐷∨¬𝑠) can be satisfied together with the internal formula.
The 𝐷 clause is then disabled by adding a hard clause (¬𝑠).

Parameters cld (list(int)) – clause 𝐷 to check

enumerate()

This method iterates through MCSes enumerating them until the formula has no more MCSes. The method
iteratively invokes compute(). Note that the method does not block the MCSes computed - this should be
explicitly done by a user.

oracle_time()

Report the total SAT solving time.
2 Joao Marques-Silva, Federico Heras, Mikolas Janota, Alessandro Previti, Anton Belov. On Computing Minimal Correction Subsets. IJCAI

2013. pp. 615-622

1.2. Supplementary examples package 85

PySAT Documentation, Release 1.8.dev17

1.2.5 LSU algorithm for MaxSAT (pysat.examples.lsu)

List of classes

LSU Linear SAT-UNSAT algorithm for MaxSAT1.
LSUPlus LSU-like algorithm extended for WCNFPlus formulas

(using Minicard).

Module description

The module implements a prototype of the known LSU/LSUS, e.g. linear (search) SAT-UNSAT, algorithm for MaxSAT,
e.g. see1. The implementation is improved by the use of the iterative totalizer encoding2. The encoding is used in an
incremental fashion, i.e. it is created once and reused as many times as the number of iterations the algorithm makes.

The implementation can be used as an executable (the list of available command-line options can be shown using
lsu.py -h) in the following way:

$ xzcat formula.wcnf.xz
p wcnf 3 6 4
1 1 0
1 2 0
1 3 0
4 -1 -2 0
4 -1 -3 0
4 -2 -3 0

$ lsu.py -s glucose3 -m -v formula.wcnf.xz
c formula: 3 vars, 3 hard, 3 soft
o 2
s OPTIMUM FOUND
v -1 -2 3 0
c oracle time: 0.0000

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.lsu import LSU
>>> from pysat.formula import WCNF
>>>
>>> wcnf = WCNF(from_file='formula.wcnf.xz')
>>>
>>> lsu = LSU(wcnf, verbose=0)
>>> lsu.solve() # set of hard clauses should be satisfiable
True
>>> print(lsu.cost) # cost of MaxSAT solution should be 2
>>> 2
>>> print(lsu.model)
[-1, -2, 3]

1 António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, Joao Marques-Silva. Iterative and core-guided MaxSAT solving: A survey
and assessment. Constraints 18(4). 2013. pp. 478-534

2 Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, Inês Lynce. Incremental Cardinality Constraints for MaxSAT. CP 2014. pp. 531-548

86 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

Module details

class examples.lsu.LSU(formula, solver='g4', incr=False, expect_interrupt=False, verbose=0)
Linear SAT-UNSAT algorithm for MaxSAT?. The algorithm can be seen as a series of satisfiability oracle calls
refining an upper bound on the MaxSAT cost, followed by one unsatisfiability call, which stops the algorithm.
The implementation encodes the sum of all selector literals using the iterative totalizer encodingPage 86, 2. At
every iteration, the upper bound on the cost is reduced and enforced by adding the corresponding unit size clause
to the working formula. No clauses are removed during the execution of the algorithm. As a result, the SAT
oracle is used incrementally.

Warning: At this point, LSU supports only unweighted problems.

The constructor receives an input WCNF formula, a name of the SAT solver to use (see SolverNames for details),
and an integer verbosity level.

Parameters

• formula (WCNF) – input MaxSAT formula

• solver (str) – name of SAT solver

• incr (bool) – enable incremental mode of Glucose

• expect_interrupt (bool) – whether or not an interrupt() call is expected

• verbose (int) – verbosity level

_assert_lt(cost)
The method enforces an upper bound on the cost of the MaxSAT solution. This is done by encoding the
sum of all soft clause selectors with the use the iterative totalizer encoding, i.e. ITotalizer. Note that the
sum is created once, at the beginning. Each of the following calls to this method only enforces the upper
bound on the created sum by adding the corresponding unit size clause. Each such clause is added on the
fly with no restart of the underlying SAT oracle.

Parameters cost (int) – the cost of the next MaxSAT solution is enforced to be lower than this
current cost

_get_model_cost(formula, model)
Given a WCNF formula and a model, the method computes the MaxSAT cost of the model, i.e. the sum of
weights of soft clauses that are unsatisfied by the model.

Parameters

• formula (WCNF) – an input MaxSAT formula

• model (list(int)) – a satisfying assignment

Return type int

_init(formula)
SAT oracle initialization. The method creates a new SAT oracle and feeds it with the formula’s hard clauses.
Afterwards, all soft clauses of the formula are augmented with selector literals and also added to the solver.
The list of all introduced selectors is stored in variable self.sels.

Parameters formula (WCNF) – input MaxSAT formula

clear_interrupt()

Clears an interruption.

1.2. Supplementary examples package 87

PySAT Documentation, Release 1.8.dev17

delete()

Explicit destructor of the internal SAT oracle and the ITotalizer object.

found_optimum()

Checks if the optimum solution was found in a prior call to solve().

Return type bool

get_model()

This method returns a model obtained during a prior satisfiability oracle call made in solve().

Return type list(int)

interrupt()

Interrupt the current execution of LSU’s solve() method. Can be used to enforce time limits using timer
objects. The interrupt must be cleared before running the LSU algorithm again (see clear_interrupt()).

oracle_time()

Method for calculating and reporting the total SAT solving time.

solve()

Computes a solution to the MaxSAT problem. The method implements the LSU/LSUS algorithm, i.e. it
represents a loop, each iteration of which calls a SAT oracle on the working MaxSAT formula and refines
the upper bound on the MaxSAT cost until the formula becomes unsatisfiable.

Returns True if the hard part of the MaxSAT formula is satisfiable, i.e. if there is a MaxSAT solution, and
False otherwise.

Return type bool

class examples.lsu.LSUPlus(formula, solver='g4', incr=False, expect_interrupt=False, verbose=0)
LSU-like algorithm extended for WCNFPlus formulas (using Minicard).

Parameters

• formula (WCNFPlus) – input MaxSAT formula in WCNF+ format

• expect_interrupt (bool) – whether or not an interrupt() call is expected

• verbose (int) – verbosity level

_assert_lt(cost)
Overrides _assert_lt of LSU in order to use Minicard’s native support for cardinality constraints

Parameters cost (int) – the cost of the next MaxSAT solution is enforced to be lower than this
current cost

1.2.6 CLD-like MCS enumerator (pysat.examples.mcsls)

List of classes

MCSls Algorithm BLS for computing MCSes, augmented with
"clause 𝐷" calls.

88 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

Module description

This module implements a prototype of a BLS- and CLD-like algorithm for the computation of a minimal correction
subset (MCS) and/or MCS enumeration. More concretely, the implementation follows the basic linear search (BLS)
for MCS exctraction augmented with clause D (CLD) oracle calls. As a result, the algorithm is not an implementation
of the BLS or CLD algorithms as described in1 but a mixture of both. Note that the corresponding original low-level
implementations of both can be found online.

The implementation can be used as an executable (the list of available command-line options can be shown using
mcsls.py -h) in the following way:

$ xzcat formula.wcnf.xz
p wcnf 3 6 4
1 1 0
1 2 0
1 3 0
4 -1 -2 0
4 -1 -3 0
4 -2 -3 0

$ mcsls.py -d -e all -s glucose3 -vv formula.wcnf.xz
c MCS: 1 3 0
c cost: 2
c MCS: 2 3 0
c cost: 2
c MCS: 1 2 0
c cost: 2
c oracle time: 0.0002

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.mcsls import MCSls
>>> from pysat.formula import WCNF
>>>
>>> wcnf = WCNF(from_file='formula.wcnf.xz')
>>>
>>> mcsls = MCSls(wcnf, use_cld=True, solver_name='g3')
>>> for mcs in mcsls.enumerate():
... mcsls.block(mcs)
... print(mcs)
[1, 3]
[2, 3]
[1, 2]

1 Joao Marques-Silva, Federico Heras, Mikolas Janota, Alessandro Previti, Anton Belov. On Computing Minimal Correction Subsets. IJCAI
2013. pp. 615-622

1.2. Supplementary examples package 89

https://reason.di.fc.ul.pt/wiki/doku.php?id=mcsls

PySAT Documentation, Release 1.8.dev17

Module details

class examples.mcsls.MCSls(formula, use_cld=False, solver_name='m22', use_timer=False)
Algorithm BLS for computing MCSes, augmented with “clause 𝐷” calls. Given an unsatisfiable partial CNF
formula, i.e. formula in the WCNF format, this class can be used to compute a given number of MCSes of the
formula. The implementation follows the description of the basic linear search (BLS) algorithm description
inPage 89, 1. It can use any SAT solver available in PySAT. Additionally, the “clause 𝐷” heuristic can be used
when enumerating MCSes.

The default SAT solver to use is m22 (see SolverNames). The “clause 𝐷” heuristic is disabled by default, i.e.
use_cld is set to False. Internal SAT solver’s timer is also disabled by default, i.e. use_timer is False.

Parameters

• formula (WCNF) – unsatisfiable partial CNF formula

• use_cld (bool) – whether or not to use “clause 𝐷”

• solver_name (str) – SAT oracle name

• use_timer (bool) – whether or not to use SAT solver’s timer

_compute()

The main method of the class, which computes an MCS given its over-approximation. The over-
approximation is defined by a model for the hard part of the formula obtained in _overapprox() (the
corresponding oracle is made in compute()).

The method is essentially a simple loop going over all literals unsatisfied by the previous model, i.e. the
literals of self.setd and checking which literals can be satisfied. This process can be seen a refinement of
the over-approximation of the MCS. The algorithm follows the pseudo-code of the BLS algorithm presented
inPage 89, 1.

Additionally, if MCSls was constructed with the requirement to make “clause 𝐷” calls, the method calls
do_cld_check() at every iteration of the loop using the literals of self.setd not yet checked, as the
contents of “clause 𝐷”.

_map_extlit(l)
Map an external variable to an internal one if necessary.

This method is used when new clauses are added to the formula incrementally, which may result in intro-
ducing new variables clashing with the previously used clause selectors. The method makes sure no clash
occurs, i.e. it maps the original variables used in the new problem clauses to the newly introduced auxiliary
variables (see add_clause()).

Given an integer literal, a fresh literal is returned. The returned integer has the same sign as the input literal.

Parameters l (int) – literal to map

Return type int

_overapprox()

The method extracts a model corresponding to an over-approximation of an MCS, i.e. it is the model of the
hard part of the formula (the corresponding oracle call is made in compute()).

Here, the set of selectors is divided into two parts: self.ss_assumps, which is an under-approximation of
an MSS (maximal satisfiable subset) and self.setd, which is an over-approximation of the target MCS.
Both will be further refined in _compute().

add_clause(clause, soft=False)
The method for adding a new hard of soft clause to the problem formula. Although the input formula is to

90 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

be specified as an argument of the constructor of MCSls, adding clauses may be helpful when enumerating
MCSes of the formula. This way, the clauses are added incrementally, i.e. on the fly.

The clause to add can be any iterable over integer literals. The additional Boolean parameter soft can be
set to Truemeaning the the clause being added is soft (note that parameter soft is set to False by default).

Also note that besides pure clauses, the method can also expect native cardinality constraints represented
as a pair (lits, bound). Only hard cardinality constraints can be added.

Parameters

• clause (iterable(int)) – a clause to add

• soft (bool) – whether or not the clause is soft

block(mcs)
Block a (previously computed) MCS. The MCS should be given as an iterable of integers. Note that this
method is not automatically invoked from enumerate() because a user may want to block some of the
MCSes conditionally depending on the needs. For example, one may want to compute disjoint MCSes
only in which case this standard blocking is not appropriate.

Parameters mcs (iterable(int)) – an MCS to block

compute(enable=[])
Compute and return one solution. This method checks whether the hard part of the formula is satisfiable,
i.e. an MCS can be extracted. If the formula is satisfiable, the model computed by the SAT call is used as
an over-approximation of the MCS in the method _compute() invoked here, which implements the BLS

An MCS is reported as a list of integers, each representing a soft clause index (the smallest index is 1).

An optional input parameter is enable, which represents a sequence (normally a list) of soft clause indices
that a user would prefer to enable/satisfy. Note that this may result in an unsatisfiable oracle call, in which
case None will be reported as solution. Also, the smallest clause index is assumed to be 1.

Parameters enable (iterable(int)) – a sequence of clause ids to enable

Return type list(int)

delete()

Explicit destructor of the internal SAT oracle.

do_cld_check(cld)
Do the “clause 𝐷” check. This method receives a list of literals, which serves a “clause 𝐷”Page 89, 1, and
checks whether the formula conjoined with 𝐷 is satisfiable.

If clause 𝐷 cannot be satisfied together with the formula, then negations of all of its literals are backbones
of the formula and the MCSls algorithm can stop. Otherwise, the literals satisfied by the new model refine
the MCS further.

Every time the method is called, a new fresh selector variable 𝑠 is introduced, which augments the current
clause𝐷. The SAT oracle then checks if clause (𝐷∨¬𝑠) can be satisfied together with the internal formula.
The 𝐷 clause is then disabled by adding a hard clause (¬𝑠).

Parameters cld (list(int)) – clause 𝐷 to check

enumerate()

This method iterates through MCSes enumerating them until the formula has no more MCSes. The method
iteratively invokes compute(). Note that the method does not block the MCSes computed - this should be
explicitly done by a user.

oracle_time()

Report the total SAT solving time.

1.2. Supplementary examples package 91

PySAT Documentation, Release 1.8.dev17

1.2.7 An iterative model enumerator (pysat.examples.models)

List of classes

enumerate_models Enumeration procedure.

Module description

The module implements a simple iterative enumeration of a given number of models of CNF or CNFPlus formula. In
the latter case, only Minicard can be used as a SAT solver. The module aims at illustrating how one can work with
model computation and enumeration.

The implementation facilitates the simplest use of a SAT oracle from the command line. If one deals with the enumera-
tion task from a Python script, it is more convenient to exploit the internal model enumeration of the pysat.solvers
module. Concretely, see pysat.solvers.Solver.enum_models().

$ cat formula.cnf
p cnf 4 4
-1 2 0
-1 3 0
-2 4 0
3 -4 0

$ models.py -e all -s glucose3 formula.cnf
v -1 -2 +3 -4 0
v +1 +2 -3 +4 0
c nof models: 2
c accum time: 0.00s
c mean time: 0.00s

Module details

examples.models.enumerate_models(formula, to_enum, solver, warm=False)
Enumeration procedure. It represents a loop iterating over satisfying assignment for a given formula until either
all or a given number of them is enumerated.

Parameters

• formula (CNFPlus) – input WCNF formula

• to_enum (int or 'all') – number of models to compute

• solver (str) – name of SAT solver

• warm (bool) – warm start flag

92 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

1.2.8 A deletion-based MUS extractor (pysat.examples.musx)

List of classes

MUSX MUS eXtractor using the deletion-based algorithm.

Module description

This module implements a deletion-based algorithm1 for extracting a minimal unsatisfiable subset (MUS) of a given
(unsafistiable) CNF formula. This simplistic implementation can deal with plain and partial CNF formulas, e.g. for-
mulas in the DIMACS CNF and WCNF formats.

The following extraction procedure is implemented:

oracle: SAT solver (initialized)
assump: full set of assumptions

i = 0

while i < len(assump):
to_test = assump[:i] + assump[(i + 1):]
if oracle.solve(assumptions=to_test):

i += 1
else:

assump = to_test

return assump

The implementation can be used as an executable (the list of available command-line options can be shown using
musx.py -h) in the following way:

$ cat formula.wcnf
p wcnf 3 6 4
1 1 0
1 2 0
1 3 0
4 -1 -2 0
4 -1 -3 0
4 -2 -3 0

$ musx.py -s glucose3 -vv formula.wcnf
c MUS approx: 1 2 0
c testing clid: 0 -> sat (keeping 0)
c testing clid: 1 -> sat (keeping 1)
c nof soft: 3
c MUS size: 2
v 1 2 0
c oracle time: 0.0001

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.
1 Joao Marques-Silva. Minimal Unsatisfiability: Models, Algorithms and Applications. ISMVL 2010. pp. 9-14

1.2. Supplementary examples package 93

PySAT Documentation, Release 1.8.dev17

>>> from pysat.examples.musx import MUSX
>>> from pysat.formula import WCNF
>>>
>>> wcnf = WCNF(from_file='formula.wcnf')
>>>
>>> musx = MUSX(wcnf, verbosity=0)
>>> musx.compute() # compute a minimally unsatisfiable set of clauses
[1, 2]

Note that the implementation is able to compute only one MUS (MUS enumeration is not supported).

Module details

class examples.musx.MUSX(formula, solver='m22', verbosity=1)
MUS eXtractor using the deletion-based algorithm. The algorithm is described inPage 93, 1 (also see the module
description above). Essentially, the algorithm can be seen as an iterative process, which tries to remove one soft
clause at a time and check whether the remaining set of soft clauses is still unsatisfiable together with the hard
clauses.

The constructor of MUSX objects receives a target CNF or .WCNF formula, a SAT solver name, and a verbosity
level. Note that the default SAT solver is MiniSat22 (referred to as 'm22', see SolverNames for details). The
default verbosity level is 1.

Parameters

• formula (WCNF) – input WCNF formula

• solver (str) – name of SAT solver

• verbosity (int) – verbosity level

_compute(approx)
Deletion-based MUS extraction. Given an over-approximation of an MUS, i.e. an unsatisfiable core pre-
viously returned by a SAT oracle, the method represents a loop, which at each iteration removes a clause
from the core and checks whether the remaining clauses of the approximation are unsatisfiable together
with the hard clauses.

Soft clauses are (de)activated using the standard MiniSat-like assumptions interface2. Each soft clause 𝑐 is
augmented with a selector literal 𝑠, e.g. (𝑐)← (𝑐∨¬𝑠). As a result, clause 𝑐 can be activated by assuming
literal 𝑠. The over-approximation provided as an input is specified as a list of selector literals for clauses in
the unsatisfiable core.

Parameters approx (list(int)) – an over-approximation of an MUS

Note that the method does not return. Instead, after its execution, the input over-approximation is refined
and contains an MUS.

compute()

This is the main method of the MUSX class. It computes a set of soft clauses belonging to an MUS of the
input formula. First, the method checks whether the formula is satisfiable. If it is, nothing else is done.
Otherwise, an unsatisfiable core of the formula is extracted, which is later used as an over-approximation
of an MUS refined in _compute().

delete()

Explicit destructor of the internal SAT oracle.

2 Niklas Eén, Niklas Sörensson. Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4). 2003. pp. 543-560

94 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

oracle_time()

Method for calculating and reporting the total SAT solving time.

1.2.9 OptUx optimal MUS enumerator (pysat.examples.optux)

List of classes

OptUx A simple Python version of the implicit hitting set based
optimal MUS extractor and enumerator.

Module description

An implementation of an extractor of a smallest size minimal unsatisfiable subset (smallest MUS, or SMUS)1234 and
enumerator of SMUSes based on implicit hitting set enumeration?. This implementation tries to replicate the well-
known SMUS extractor Forqes?. In contrast to Forqes, this implementation supports not only plain DIMACS CNF
formulas but also weighted WCNF formulas. As a result, the tool is able to compute and enumerate optimal MUSes in
case of weighted formulas. On the other hand, this prototype lacks a number of command-line options used in Forqes
and so it may be less efficient compared to Forqes but the performance difference should not be significant.

The file provides a class OptUx, which is the basic implementation of the algorithm. It can be applied to any formula
in the CNF or WCNF format.

The implementation can be used as an executable (the list of available command-line options can be shown using
optux.py -h) in the following way:

$ xzcat formula.wcnf.xz
p wcnf 3 6 4
1 1 0
1 2 0
1 3 0
4 -1 -2 0
4 -1 -3 0
4 -2 -3 0

$ optux.py -vvv formula.wcnf.xz
c mcs: 1 2 0
c mcses: 0 unit, 1 disj
c mus: 1 2 0
c cost: 2
c oracle time: 0.0001

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.optux import OptUx
>>> from pysat.formula import WCNF
>>>

(continues on next page)

1 Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, Joao Marques-Silva. Smallest MUS Extraction with Minimal Hitting Set Dualization.
CP 2015. pp. 173-182

2 Mark H. Liffiton, Maher N. Mneimneh, Ines Lynce, Zaher S. Andraus, Joao Marques-Silva, Karem A. Sakallah. A branch and bound algorithm
for extracting smallest minimal unsatisfiable subformulas. Constraints An Int. J. 14(4). 2009. pp. 415-442

3 Alexey Ignatiev, Mikolas Janota, Joao Marques-Silva. Quantified Maximum Satisfiability: A Core-Guided Approach. SAT 2013. pp. 250-266
4 Alexey Ignatiev, Mikolas Janota, Joao Marques-Silva. Quantified maximum satisfiability. Constraints An Int. J. 21(2). 2016. pp. 277-302

1.2. Supplementary examples package 95

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> wcnf = WCNF(from_file='formula.wcnf.xz')
>>>
>>> with OptUx(wcnf) as optux:
... for mus in optux.enumerate():
... print('mus {0} has cost {1}'.format(mus, optux.cost))
mus [1, 2] has cost 2
mus [1, 3] has cost 2
mus [2, 3] has cost 2

As can be seen in the example above, the solver can be instructed either to compute one optimal MUS of an input
formula, or to enumerate a given number (or all) of its top optimal MUSes.

Module details

class examples.optux.OptUx(formula, solver='g3', adapt=False, cover=None, dcalls=False, exhaust=False,
minz=False, puresat=False, unsorted=False, trim=False, verbose=0)

A simple Python version of the implicit hitting set based optimal MUS extractor and enumerator. Given a
(weighted) (partial) CNF formula, i.e. formula in the WCNF format, this class can be used to compute a given num-
ber of optimal MUS (starting from the best one) of the input formula. OptUx roughly follows the implementation
of Forqes? but lacks a few additional heuristics, which however aren’t applied in Forqes by default.

As a result, OptUx applies exhaustive disjoint minimal correction subset (MCS) enumeration?,?,?,Page 95, 4 with
the incremental use of RC25 as an underlying MaxSAT solver. Once disjoint MCSes are enumerated, they are
used to bootstrap a hitting set solver. This implementation uses Hitman as a hitting set solver, which is again
based on RC2.

Note that in the main implicit hitting enumeration loop of the algorithm, OptUx follows Forqes in that it does
not reduce correction subsets detected to minimal correction subsets. As a result, correction subsets computed
in the main loop are added to Hitman unreduced.

OptUx can use any SAT solver available in PySAT. The default SAT solver to use is g3, which stands for Glucose
36 (see SolverNames). Boolean parameters adapt, exhaust, and minz control whether or not the underlying
RC2 oracles should apply detection and adaptation of intrinsic AtMost1 constraints, core exhaustion, and core
reduction. Also, unsatisfiable cores can be trimmed if the trim parameter is set to a non-zero integer. Finally,
verbosity level can be set using the verbose parameter.

Two additional optional parameters unsorted and dcalls can be used to instruct the tool to enumerate MUSes
in the unsorted fashion, i.e. optimal MUSes are not guaranteed to go first. For this, OptUx applies LBX-like MCS
enumeration (it uses LBX directly). Parameter dcalls can be applied to instruct the underlying MCS enumerator
to apply clause D oracle calls.

Another optional paramater puresat can be used to instruct OptUx to run a purely SAT-based minimal hitting
set enumerator, following the ideas of7. The value of puresat can be either False, meaning that no pure SAT
enumeration is to be done or be equal to 'mgh', 'cd15', or 'lgl' - these are the solvers that support hard phase
setting, i.e. user preferences will not be overwritten by the phase saving heuristic8.

Finally, one more optional input parameter cover is to be used when exhaustive enumeration of MUSes is not
necessary and the tool can stop as soon as a given formula is covered by the set of currently computed MUSes.
This can be made to work if the soft clauses of formula are of size 1.

5 Alexey Ignatiev, Antonio Morgado, Joao Marques-Silva. RC2: an Efficient MaxSAT Solver. J. Satisf. Boolean Model. Comput. 11(1). 2019.
pp. 53-64

6 Gilles Audemard, Jean-Marie Lagniez, Laurent Simon. Improving Glucose for Incremental SAT Solving with Assumptions: Application to
MUS Extraction. SAT 2013. pp. 309-317

7 Enrico Giunchiglia, Marco Maratea. Solving Optimization Problems with DLL. ECAI 2006. pp. 377-381
8 Knot Pipatsrisawat, Adnan Darwiche. A Lightweight Component Caching Scheme for Satisfiability Solvers. SAT 2007. pp. 294-299

96 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

Parameters

• formula (WCNFPlus) – (weighted) (partial) CNFPlus formula

• solver (str) – SAT oracle name

• adapt (bool) – detect and adapt intrinsic AtMost1 constraints

• cover (CNFPlus) – CNFPlus formula to cover when doing MUS enumeration

• dcalls (bool) – apply clause D oracle calls (for unsorted enumeration only)

• exhaust (bool) – do core exhaustion

• minz (bool) – do heuristic core reduction

• puresat (str) – use pure SAT-based hitting set enumeration

• unsorted (bool) – apply unsorted MUS enumeration

• trim (int) – do core trimming at most this number of times

• verbose (int) – verbosity level

_disjoint(formula, solver, adapt, exhaust, minz, trim)

This method constitutes the preliminary step of the implicit hitting set paradigm of Forqes. Namely, it
enumerates all the disjoint minimal correction subsets (MCSes) of the formula, which will be later used to
bootstrap the hitting set solver.

Note that the MaxSAT solver in use is RC2. As a result, all the input parameters of the method, namely,
formula, solver, adapt, exhaust`, minz, and trim - represent the input and the options for the RC2
solver.

Parameters

• formula (WCNF) – input formula

• solver (str) – SAT solver name

• adapt (bool) – detect and adapt AtMost1 constraints

• exhaust (bool) – exhaust unsatisfiable cores

• minz (bool) – apply heuristic core minimization

• trim (int) – trim unsatisfiable cores at most this number of times

_process_soft(formula)
The method is for processing the soft clauses of the input formula. Concretely, it checks which soft clauses
must be relaxed by a unique selector literal and applies the relaxation.

Parameters formula (WCNF) – input formula

compute()

This method implements the main look of the implicit hitting set paradigm of Forqes to compute a best-cost
MUS. The result MUS is returned as a list of integers, each representing a soft clause index.

Return type list(int)

delete()

Explicit destructor of the internal hitting set and SAT oracles.

enumerate()

This is generator method iterating through MUSes and enumerating them until the formula has no more
MUSes, or a user decides to stop the process.

1.2. Supplementary examples package 97

PySAT Documentation, Release 1.8.dev17

Return type list(int)

oracle_time()

This method computes and returns the total SAT solving time involved.

Return type float

1.2.10 RC2 MaxSAT solver (pysat.examples.rc2)

List of classes

RC2 Implementation of the basic RC2 algorithm.
RC2Stratified RC2 augmented with BLO and stratification techniques.

Module description

An implementation of the RC2 algorithm for solving maximum satisfiability. RC2 stands for relaxable cardinality
constraints (alternatively, soft cardinality constraints) and represents an improved version of the OLLITI algorithm,
which was described in1 and2 and originally implemented in the MSCG MaxSAT solver.

Initially, this solver was supposed to serve as an example of a possible PySAT usage illustrating how a state-of-the-art
MaxSAT algorithm could be implemented in Python and still be efficient. It participated in the MaxSAT Evaluations
2018 and 2019 where, surprisingly, it was ranked first in two complete categories: unweighted and weighted. A brief
solver description can be found in3. A more detailed solver description can be found in4.

The file implements two classes: RC2 and RC2Stratified . The former class is the basic implementation of the
algorithm, which can be applied to a MaxSAT formula in the WCNFPlus format. The latter class additionally implements
Boolean lexicographic optimization (BLO)5 and stratification6 on top of RC2.

The implementation can be used as an executable (the list of available command-line options can be shown using
rc2.py -h) in the following way:

$ xzcat formula.wcnf.xz
p wcnf 3 6 4
1 1 0
1 2 0
1 3 0
4 -1 -2 0
4 -1 -3 0
4 -2 -3 0

$ rc2.py -vv formula.wcnf.xz
c formula: 3 vars, 3 hard, 3 soft
c cost: 1; core sz: 2; soft sz: 2
c cost: 2; core sz: 2; soft sz: 1
s OPTIMUM FOUND

(continues on next page)

1 António Morgado, Carmine Dodaro, Joao Marques-Silva. Core-Guided MaxSAT with Soft Cardinality Constraints. CP 2014. pp. 564-573
2 António Morgado, Alexey Ignatiev, Joao Marques-Silva. MSCG: Robust Core-Guided MaxSAT Solving. JSAT 9. 2014. pp. 129-134
3 Alexey Ignatiev, António Morgado, Joao Marques-Silva. RC2: A Python-based MaxSAT Solver. MaxSAT Evaluation 2018. p. 22
4 Alexey Ignatiev, António Morgado, Joao Marques-Silva. RC2: An Efficient MaxSAT Solver. MaxSAT Evaluation 2018. JSAT 11. 2019. pp.

53-64
5 Joao Marques-Silva, Josep Argelich, Ana Graça, Inês Lynce. Boolean lexicographic optimization: algorithms & applications. Ann. Math.

Artif. Intell. 62(3-4). 2011. pp. 317-343
6 Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, Jordi Levy. Improving WPM2 for (Weighted) Partial MaxSAT. CP 2013. pp. 117-132

98 Chapter 1. API documentation

https://reason.di.fc.ul.pt/wiki/doku.php?id=mscg
https://maxsat-evaluations.github.io/2018/rankings.html
https://maxsat-evaluations.github.io/2018/rankings.html
https://maxsat-evaluations.github.io/2019/rankings.html

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

o 2
v -1 -2 3
c oracle time: 0.0001

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.examples.rc2 import RC2
>>> from pysat.formula import WCNF
>>>
>>> wcnf = WCNF(from_file='formula.wcnf.xz')
>>>
>>> with RC2(wcnf) as rc2:
... for m in rc2.enumerate():
... print('model {0} has cost {1}'.format(m, rc2.cost))
model [-1, -2, 3] has cost 2
model [1, -2, -3] has cost 2
model [-1, 2, -3] has cost 2
model [-1, -2, -3] has cost 3

As can be seen in the example above, the solver can be instructed either to compute one MaxSAT solution of an input
formula, or to enumerate a given number (or all) of its top MaxSAT solutions.

Module details

class examples.rc2.RC2(formula, solver='g3', adapt=False, exhaust=False, incr=False, minz=False, trim=0,
verbose=0)

Implementation of the basic RC2 algorithm. Given a (weighted) (partial) CNF formula, i.e. formula in the
WCNFPlus format, this class can be used to compute a given number of MaxSAT solutions for the input formula.
RC2 roughly follows the implementation of algorithm OLLITI?? of MSCG and applies a few heuristics on top of
it. These include

• unsatisfiable core exhaustion (see method exhaust_core()),

• unsatisfiable core reduction (see method minimize_core()),

• intrinsic AtMost1 constraints (see method adapt_am1()).

RC2 can use any SAT solver available in PySAT. The default SAT solver to use is g3 (see SolverNames). Ad-
ditionally, if Glucose is chosen, the incr parameter controls whether to use the incremental mode of Glucose7

(turned off by default). Boolean parameters adapt, exhaust, and minz control whether or to apply detection
and adaptation of intrinsic AtMost1 constraints, core exhaustion, and core reduction. Unsatisfiable cores can be
trimmed if the trim parameter is set to a non-zero integer. Finally, verbosity level can be set using the verbose
parameter.

Parameters

• formula (WCNFPlus) – (weighted) (partial) CNFPlus formula

• solver (str) – SAT oracle name

• adapt (bool) – detect and adapt intrinsic AtMost1 constraints

• exhaust (bool) – do core exhaustion

• incr (bool) – use incremental mode of Glucose
7 Gilles Audemard, Jean-Marie Lagniez, Laurent Simon. Improving Glucose for Incremental SAT Solving with Assumptions: Application to

MUS Extraction. SAT 2013. pp. 309-317

1.2. Supplementary examples package 99

PySAT Documentation, Release 1.8.dev17

• minz (bool) – do heuristic core reduction

• trim (int) – do core trimming at most this number of times

• verbose (int) – verbosity level

_map_extlit(l)
Map an external variable to an internal one if necessary.

This method is used when new clauses are added to the formula incrementally, which may result in intro-
ducing new variables clashing with the previously used clause selectors. The method makes sure no clash
occurs, i.e. it maps the original variables used in the new problem clauses to the newly introduced auxiliary
variables (see add_clause()).

Given an integer literal, a fresh literal is returned. The returned integer has the same sign as the input literal.

Parameters l (int) – literal to map

Return type int

adapt_am1()

Detect and adapt intrinsic AtMost1 constraints. Assume there is a subset of soft clauses 𝒮 ′ ⊆ 𝒮 s.t.∑︀
𝑐∈𝒮′ 𝑐 ≤ 1, i.e. at most one of the clauses of 𝒮 ′ can be satisfied.

Each AtMost1 relationship between the soft clauses can be detected in the following way. The method
traverses all soft clauses of the formula one by one, sets one respective selector literal to true and checks
whether some other soft clauses are forced to be false. This is checked by testing if selectors for other
soft clauses are unit-propagated to be false. Note that this method for detection of AtMost1 constraints is
incomplete, because in general unit propagation does not suffice to test whether or not ℱ ∧ 𝑙𝑖 |= ¬𝑙𝑗 .

Each intrinsic AtMost1 constraint detected this way is handled by calling process_am1().

add_clause(clause, weight=None)
The method for adding a new hard of soft clause to the problem formula. Although the input formula is to
be specified as an argument of the constructor of RC2, adding clauses may be helpful when enumerating
MaxSAT solutions of the formula. This way, the clauses are added incrementally, i.e. on the fly.

The clause to add can be any iterable over integer literals. The additional integer parameter weight can
be set to meaning the the clause being added is soft having the corresponding weight (note that parameter
weight is set to None by default meaning that the clause is hard).

Also note that besides pure clauses, the method can also expect native cardinality constraints represented
as a pair (lits, bound). Only hard cardinality constraints can be added.

Parameters

• clause (iterable(int)) – a clause to add

• weight (int) – weight of the clause (if any)

>>> from pysat.examples.rc2 import RC2
>>> from pysat.formula import WCNF
>>>
>>> wcnf = WCNF()
>>> wcnf.append([-1, -2]) # adding hard clauses
>>> wcnf.append([-1, -3])
>>>
>>> wcnf.append([1], weight=1) # adding soft clauses
>>> wcnf.append([2], weight=1)
>>> wcnf.append([3], weight=1)
>>>

(continues on next page)

100 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

(continued from previous page)

>>> with RC2(wcnf) as rc2:
... rc2.compute() # solving the MaxSAT problem
[-1, 2, 3]
... print(rc2.cost)
1
... rc2.add_clause([-2, -3]) # adding one more hard clause
... rc2.compute() # computing another model
[-1, -2, 3]
... print(rc2.cost)
2

compute()

This method can be used for computing one MaxSAT solution, i.e. for computing an assignment satisfying
all hard clauses of the input formula and maximizing the sum of weights of satisfied soft clauses. It is a
wrapper for the internal compute_() method, which does the job, followed by the model extraction.

Note that the method returns None if no MaxSAT model exists. The method can be called multiple times,
each being followed by blocking the last model. This way one can enumerate top-𝑘 MaxSAT solutions (this
can also be done by calling enumerate()).

Returns a MaxSAT model

Return type list(int)

>>> from pysat.examples.rc2 import RC2
>>> from pysat.formula import WCNF
>>>
>>> rc2 = RC2(WCNF()) # passing an empty WCNF() formula
>>> rc2.add_clause([-1, -2])
>>> rc2.add_clause([-1, -3])
>>> rc2.add_clause([-2, -3])
>>>
>>> rc2.add_clause([1], weight=1)
>>> rc2.add_clause([2], weight=1)
>>> rc2.add_clause([3], weight=1)
>>>
>>> model = rc2.compute()
>>> print(model)
[-1, -2, 3]
>>> print(rc2.cost)
2
>>> rc2.delete()

compute_()

Main core-guided loop, which iteratively calls a SAT oracle, extracts a new unsatisfiable core and processes
it. The loop finishes as soon as a satisfiable formula is obtained. If specified in the command line, the
method additionally calls adapt_am1() to detect and adapt intrinsic AtMost1 constraints before executing
the loop.

Return type bool

create_sum(bound=1)
Create a totalizer object encoding a cardinality constraint on the new list of relaxation literals obtained
in process_sels() and process_sums(). The clauses encoding the sum of the relaxation literals are

1.2. Supplementary examples package 101

PySAT Documentation, Release 1.8.dev17

added to the SAT oracle. The sum of the totalizer object is encoded up to the value of the input parameter
bound, which is set to 1 by default.

Parameters bound (int) – right-hand side for the sum to be created

Return type ITotalizer

Note that if Minicard is used as a SAT oracle, native cardinality constraints are used instead of ITotalizer.

delete()

Explicit destructor of the internal SAT oracle and all the totalizer objects creating during the solving process.

enumerate(block=0)
Enumerate top MaxSAT solutions (from best to worst). The method works as a generator, which iteratively
calls compute() to compute a MaxSAT model, blocks it internally and returns it.

An optional parameter can be used to enforce computation of MaxSAT models corresponding to different
maximal satisfiable subsets (MSSes) or minimal correction subsets (MCSes). To block MSSes, one should
set the block parameter to 1. To block MCSes, set it to -1. By the default (for blocking MaxSAT models),
block is set to 0.

Parameters block (int) – preferred way to block solutions when enumerating

Returns a MaxSAT model

Return type list(int)

>>> from pysat.examples.rc2 import RC2
>>> from pysat.formula import WCNF
>>>
>>> rc2 = RC2(WCNF()) # passing an empty WCNF() formula
>>> rc2.add_clause([-1, -2]) # adding clauses "on the fly"
>>> rc2.add_clause([-1, -3])
>>> rc2.add_clause([-2, -3])
>>>
>>> rc2.add_clause([1], weight=1)
>>> rc2.add_clause([2], weight=1)
>>> rc2.add_clause([3], weight=1)
>>>
>>> for model in rc2.enumerate():
... print(model, rc2.cost)
[-1, -2, 3] 2
[1, -2, -3] 2
[-1, 2, -3] 2
[-1, -2, -3] 3
>>> rc2.delete()

exhaust_core(tobj)
Exhaust core by increasing its bound as much as possible. Core exhaustion was originally referred to as
cover optimization in?.

Given a totalizer object tobj representing a sum of some relaxation variables 𝑟 ∈ 𝑅 that augment soft
clauses 𝒞𝑟, the idea is to increase the right-hand side of the sum (which is equal to 1 by default) as much
as possible, reaching a value 𝑘 s.t. formula ℋ ∧ 𝒞𝑟 ∧ (

∑︀
𝑟∈𝑅 𝑟 ≤ 𝑘) is still unsatisfiable while increasing

it further makes the formula satisfiable (hereℋ denotes the hard part of the formula).

The rationale is that calling an oracle incrementally on a series of slightly modified formulas focusing only
on the recently computed unsatisfiable core and disregarding the rest of the formula may be practically
effective.

102 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

filter_assumps()

Filter out unnecessary selectors and sums from the list of assumption literals. The corresponding values
are also removed from the dictionaries of bounds and weights.

Note that assumptions marked as garbage are collected in the core processing methods, i.e. in
process_core(), process_sels(), and process_sums().

get_core()

Extract unsatisfiable core. The result of the procedure is stored in variable self.core. If necessary, core
trimming and also heuristic core reduction is applied depending on the command-line options. A minimum
weight of the core is computed and stored in self.minw. Finally, the core is divided into two parts:

1. clause selectors (self.core_sels),

2. sum assumptions (self.core_sums).

init(formula, incr=False)
Initialize the internal SAT oracle. The oracle is used incrementally and so it is initialized only once when
constructing an object of class RC2. Given an input WCNFPlus formula, the method bootstraps the oracle
with its hard clauses. It also augments the soft clauses with “fresh” selectors and adds them to the oracle
afterwards.

Optional input parameter incr (False by default) regulates whether or not Glucose’s incremental
modePage 99, 7 is turned on.

Parameters

• formula (WCNFPlus) – input formula

• incr (bool) – apply incremental mode of Glucose

minimize_core()

Reduce a previously extracted core and compute an over-approximation of an MUS. This is done using the
simple deletion-based MUS extraction algorithm.

The idea is to try to deactivate soft clauses of the unsatisfiable core one by one while checking if the remain-
ing soft clauses together with the hard part of the formula are unsatisfiable. Clauses that are necessary for
preserving unsatisfiability comprise an MUS of the input formula (it is contained in the given unsatisfiable
core) and are reported as a result of the procedure.

During this core minimization procedure, all SAT calls are dropped after obtaining 1000 conflicts.

oracle_time()

Report the total SAT solving time.

process_am1(am1)
Process an AtMost1 relation detected by adapt_am1(). Note that given a set of soft clauses 𝒮 ′ at most one
of which can be satisfied, one can immediately conclude that the formula has cost at least |𝒮 ′|−1 (assuming
unweighted MaxSAT). Furthermore, it is safe to replace all clauses of 𝒮 ′ with a single soft clause

∑︀
𝑐∈𝒮′ 𝑐.

Here, input parameter am1 plays the role of subset 𝒮 ′ mentioned above. The procedure bumps the MaxSAT
cost by self.minw * (len(am1) - 1).

All soft clauses involved in am1 are replaced by a single soft clause, which is a disjunction of the selectors
of clauses in am1. The weight of the new soft clause is set to self.minw.

Parameters am1 (list(int)) – a list of selectors connected by an AtMost1 constraint

process_core()

The method deals with a core found previously in get_core(). Clause selectors self.core_sels and

1.2. Supplementary examples package 103

PySAT Documentation, Release 1.8.dev17

sum assumptions involved in the core are treated separately of each other. This is handled by calling meth-
ods process_sels() and process_sums(), respectively. Whenever necessary, both methods relax the
core literals, which is followed by creating a new totalizer object encoding the sum of the new relaxation
variables. The totalizer object can be “exhausted” depending on the option.

process_sels()

Process soft clause selectors participating in a new core. The negation ¬𝑠 of each selector literal 𝑠 partici-
pating in the unsatisfiable core is added to the list of relaxation literals, which will be later used to create a
new totalizer object in create_sum().

If the weight associated with a selector is equal to the minimal weight of the core, e.g. self.minw, the
selector is marked as garbage and will be removed in filter_assumps(). Otherwise, the clause is split
as described in?.

process_sums()

Process cardinality sums participating in a new core. Whenever necessary, some of the sum assumptions
are removed or split (depending on the value of self.minw). Deleted sums are marked as garbage and are
dealt with in filter_assumps().

In some cases, the process involves updating the right-hand sides of the existing cardinality sums (see the
call to update_sum()). The overall procedure is detailed in?.

set_bound(tobj, rhs, weight=None)
Given a totalizer sum, its right-hand side to be enforced, and a weight, the method creates a new sum
assumption literal, which will be used in the following SAT oracle calls. If weight is left unspecified, the
current core’s weight, i.e. self.minw, is used.

Parameters

• tobj (ITotalizer) – totalizer sum

• rhs (int) – right-hand side

• weight (int) – numeric weight of the assumption

trim_core()

This method trims a previously extracted unsatisfiable core at most a given number of times. If a fixed point
is reached before that, the method returns.

update_sum(assump)
The method is used to increase the bound for a given totalizer sum. The totalizer object is identified by the
input parameter assump, which is an assumption literal associated with the totalizer object.

The method increases the bound for the totalizer sum, which involves adding the corresponding new clauses
to the internal SAT oracle.

The method returns the totalizer object followed by the new bound obtained.

Parameters assump (int) – assumption literal associated with the sum

Return type ITotalizer, int

Note that if Minicard is used as a SAT oracle, native cardinality constraints are used instead of ITotalizer.

class examples.rc2.RC2Stratified(formula, solver='g3', adapt=False, blo='div', exhaust=False, incr=False,
minz=False, nohard=False, trim=0, verbose=0)

RC2 augmented with BLO and stratification techniques. Although class RC2 can deal with weighted formulas,
there are situations when it is necessary to apply additional heuristics to improve the performance of the solver
on weighted MaxSAT formulas. This class extends capabilities of RC2 with two heuristics, namely

1. Boolean lexicographic optimization (BLO)?

104 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

2. diversity-based stratification?

3. cluster-based stratification

To specify which heuristics to apply, a user can assign the blo parameter to one of the values (by default it is set
to 'div'):

• 'basic' (‘BLO’ only)

• div (‘BLO’ + diversity-based stratification)

• cluster (‘BLO’ + cluster-based stratification)

• full (‘BLO’ + diversity- + cluster-based stratification)

Except for the aforementioned additional techniques, every other component of the solver remains as in the base
class RC2. Therefore, a user is referred to the documentation of RC2 for details.

activate_clauses(beg)
This method is used for activating the clauses that belong to optimization levels up to the newly computed
level. It also reactivates previously deactivated clauses (see process_sels() and process_sums() for
details).

compute()

This method solves the MaxSAT problem iteratively. Each optimization level is tackled the standard
way, i.e. by calling compute_(). A new level is started by calling next_level() and finished
by calling finish_level(). Each new optimization level activates more soft clauses by invoking
activate_clauses().

finish_level()

This method does postprocessing of the current optimization level after it is solved. This includes hardening
some of the soft clauses (depending on their remaining weights) and also garbage collection.

init_wstr()

Compute and initialize optimization levels for BLO and stratification. This method is invoked once, from
the constructor of an object of RC2Stratified . Given the weights of the soft clauses, the method divides
the MaxSAT problem into several optimization levels.

next_level()

Compute the next optimization level (starting from the current one). The procedure represents a loop, each
iteration of which checks whether or not one of the conditions holds:

• partial BLO condition

• diversity-based stratification condition

• cluster-based stratification condition

If any of these holds, the loop stops.

process_am1(am1)
Due to the solving process involving multiple optimization levels to be treated individually, new soft clauses
for the detected intrinsic AtMost1 constraints should be remembered. The method is a slightly modified
version of the base method RC2.process_am1() taking care of this.

process_sels()

A redefined version of RC2.process_sels(). The only modification affects the clauses whose weight
after splitting becomes less than the weight of the current optimization level. Such clauses are deactivated
and to be reactivated at a later stage.

1.2. Supplementary examples package 105

PySAT Documentation, Release 1.8.dev17

process_sums()

A redefined version of RC2.process_sums(). The only modification affects the clauses whose weight
after splitting becomes less than the weight of the current optimization level. Such clauses are deactivated
and to be reactivated at a later stage.

1.3 Supplementary allies package

This module provides interface to a list of external tools useful in practical SAT-based problem solving. Although only
ApproxMCv4 is currently present here, the list of tools will grow.

1.3.1 ApproxMC model counter (pysat.allies.approxmc)

List of classes

Counter A wrapper for ApproxMC, a state-of-the-art approxi-
mate model counter.

Module description

This module provides interface to ApproxMCv4, a state-of-the-art approximate model counter utilising an improved
version of CryptoMiniSat to give approximate model counts to problems of size and complexity that are out of reach
for earlier approximate model counters. The original work on ApproxMCv4 has been published in1 and2.

Note that to be functional, the module requires package pyapproxmc to be installed:

$ pip install pyapproxmc

The interface gives access to Counter, which expects a formula in CNF as input. Given a few additional (optional)
arguments, including a random seed, tolerance factor 𝜀, and confidence 𝛿, the class can be used to get an approximate
number of models of the formula, subject to the given tolerance factor and confidence parameter.

Namely, given a CNF formula ℱ with #ℱ as the exact number of models, and parameters 𝜀 ∈ (0, 1] and 𝛿 ∈
[0, 1), the counter computes and reports a value 𝐶, which is an approximate number of models of ℱ , such that
Pr

[︁
1

1+𝜀#ℱ ≤ 𝐶 ≤ (1 + 𝜀)#ℱ
]︁
≥ 1− 𝛿.

The implementation can be used as an executable (the list of available command-line options can be shown using
approxmc.py -h) in the following way:

$ xzcat formula.cnf.xz
p cnf 20 2
1 2 3 0
3 20 0

$ approxmc.py -p 1,2,3-9 formula.cnf.xz
s mc 448

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.
1 Mate Soos, Kuldeep S. Meel. BIRD: Engineering an Efficient CNF-XOR SAT Solver and Its Applications to Approximate Model Counting.

AAAI 2019. pp. 1592-1599
2 Mate Soos, Stephan Gocht, Kuldeep S. Meel. Tinted, Detached, and Lazy CNF-XOR Solving and Its Applications to Counting and Sampling.

CAV 2020. pp. 463-484

106 Chapter 1. API documentation

https://github.com/meelgroup/approxmc/
https://github.com/meelgroup/approxmc/

PySAT Documentation, Release 1.8.dev17

>>> from pysat.allies.approxmc import Counter
>>> from pysat.formula import CNF
>>>
>>> cnf = CNF(from_file='formula.cnf.xz')
>>>
>>> with Counter(cnf) as counter:
... print(counter.counter(projection=range(1, 10))
448

As can be seen in the above example, besides model counting across all the variables in a given input formula, the
counter supports projected model counting, i.e. when one needs to approximate the number of models with respect
to a given list of variables rather than with respect to all variables appearing in the formula. This feature comes in
handy when the formula is obtained, for example, through Tseitin transformation3 with a number of auxiliary variables
introduced.

Module details

class allies.approxmc.Counter(formula=None, seed=1, epsilon=0.8, delta=0.2, verbose=0)
A wrapper for ApproxMC, a state-of-the-art approximate model counter. Given a formula in CNF, this class
can be used to get an approximate number of models of the formula, subject to tolerance factor epsilon and
confidence parameter delta.

Namely, given a CNF formula ℱ and parameters 𝜀 ∈ (0, 1] and 𝛿 ∈ [0, 1), the counter computes and reports
a value 𝐶 such that Pr

[︁
1

1+𝜀#ℱ ≤ 𝐶 ≤ (1 + 𝜀)#ℱ
]︁
≥ 1 − 𝛿. Here, #ℱ denotes the exact model count for

formula ℱ .

The formula argument can be left unspecified at this stage. In this case, a user is expected to add all the relevant
clauses using add_clause().

An additional parameter a user may want to specify is integer seed used by ApproxMC. The value of seed is
set to 1 by default.

Parameters

• formula (CNF) – CNF formula

• seed (int) – integer seed value

• epsilon (float) – tolerance factor

• delta (float) – confidence parameter

• verbose (int) – verbosity level

>>> from pysat.allies.approxmc import Counter
>>> from pysat.formula import CNF
>>>
>>> cnf = CNF(from_file='some-formula.cnf')
>>> with Counter(formula=cnf, epsilon=0.1, delta=0.9) as counter:
... num = counter.count() # an approximate number of models

add_clause(clause)
The method for adding a clause to the problem formula. Although the input formula can be specified as an
argument of the constructor of Counter, adding clauses may also be helpful afterwards, on the fly.

3 G. S. Tseitin. On the complexity of derivations in the propositional calculus. Studies in Mathematics and Mathematical Logic, Part II. pp.
115–125, 1968

1.3. Supplementary allies package 107

https://github.com/meelgroup/approxmc/

PySAT Documentation, Release 1.8.dev17

The clause to add can be any iterable over integer literals.

Parameters clause (iterable(int)) – a clause to add

>>> from pysat.allies.approxmc import Counter
>>>
>>> with Counter() as counter:
... counter.add_clause(range(1, 4))
... counter.add_clause([3, 20])
...
... print(counter.count())
720896

count(projection=None)
Given the formula provided by the user either in the constructor of Counter or through a series of calls
to add_clause(), this method runs the ApproxMC counter with the specified values of tolerance 𝜀 and
confidence 𝛿 parameters, as well as the random seed value, and returns the number of models estimated.

A user may specify an argument projection, which is a list of integers specifying the variables with re-
spect to which projected model counting should be performed. If projection is left as None, approximate
model counting is performed wrt. all the variables of the input formula.

Parameters projection (list(int)) – variables to project on

>>> from pysat.allies.approxmc import Counter
>>> from pysat.card import CardEnc, EncType
>>>
>>> # cardinality constraint with auxiliary variables
>>> # there are exactly 70 models for the constraint
>>> # over the 8 original variables
>>> cnf = CardEnc.equals(lits=range(1, 9), bound=4, encoding=EncType.cardnetwrk)
>>>
>>> with Counter(formula=cnf, epsilon=0.05, delta=0.95) as counter:
... print(counter.count())
123840
>>>
>>> with Counter(formula=cnf, epsilon=0.05, delta=0.95) as counter:
... print(counter.count(projection=range(1, 8)))
70

delete()

Explicit destructor of the internal Counter oracle. Delete the actual counter object and sets it to None.

1.3.2 UniGen almost-uniform sampler (pysat.allies.unigen)

List of classes

Sampler A wrapper for UniGen3, a state-of-the-art almost-
uniform sampler.

108 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

Module description

This module provides interface to UniGen3, a state-of-the-art almost-uniform sampler utilising an improved version
of CryptoMiniSat to handle problems of size and complexity that were not possible before. . The original work on
UniGen3 has been published in1,2, and3.

Note that to be functional, the module requires package pyunigen to be installed:

$ pip install pyunigen

The interface gives access to Sampler, which expects a formula in CNF as input. Given a few additional (optional)
arguments, including a random seed, tolerance factor 𝜀, confidence 𝛿 (to be used by ApproxMC), and uniformity
parameter 𝜅, the class can be used to get apply almost-uniform sampling and to obtain a requested number of samples
as a result, subject to the given tolerance factor and confidence parameter.

Namely, given a CNF formula ℱ with the set of satisfying assignments (or models) denoted by 𝑠𝑜𝑙(ℱ) and parameter
𝜀 ∈ (0, 1], a uniform sampler outputs a model 𝑦 ∈ 𝑠𝑜𝑙(ℱ) such that Pr [𝑦 is output] = 1

|𝑠𝑜𝑙(ℱ)| . Almost-uniform
sampling relaxes the uniformity guarantee and ensures that 1

(1+𝜀)|𝑠𝑜𝑙(ℱ)| ≤ Pr [𝑦 is output] ≤ 1+𝜀
|𝑠𝑜𝑙(ℱ)| .

The implementation can be used as an executable (the list of available command-line options can be shown using
unigen.py -h) in the following way:

$ xzcat formula.cnf.xz
p cnf 6 2
1 5 0
1 6 0

$ unigen.py -n 4 formula.cnf.xz
v +1 -2 +3 -4 -5 -6 0
v +1 +2 +3 -4 +5 +6 0
v +1 -2 -3 -4 +5 -6 0
v -1 -2 -3 -4 +5 +6 0

Alternatively, the algorithm can be accessed and invoked through the standard import interface of Python, e.g.

>>> from pysat.allies.unigen import Sampler
>>> from pysat.formula import CNF
>>>
>>> cnf = CNF(from_file='formula.cnf.xz')
>>>
>>> with Sampler(cnf) as sampler:
... print(sampler.sample(nof_samples=4, sample_over=[1, 2, 3])
[[1, 2, 3, 4, 5], [1, -2, -3, -4, -5], [1, -2, -3, -4, 5], [1, 2, -3, 4, 5]]

As can be seen in the above example, sampling can be done over a user-defined set of variables (rather than the complete
set of variables).

1 Supratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi. Balancing Scalability and Uniformity in SAT Witness Generator. DAC 2014. pp.
60:1-60:6

2 Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, Moshe Y. Vardi. On Parallel Scalable Uniform SAT Witness
Generation. TACAS 2015. pp. 304-319

3 Mate Soos, Stephan Gocht, Kuldeep S. Meel. Tinted, Detached, and Lazy CNF-XOR Solving and Its Applications to Counting and Sampling.
CAV 2020. pp. 463-484

1.3. Supplementary allies package 109

https://github.com/meelgroup/unigen/

PySAT Documentation, Release 1.8.dev17

Module details

class allies.unigen.Sampler(formula=None, seed=1, epsilon=0.8, delta=0.2, kappa=0.638, verbose=0)
A wrapper for UniGen3, a state-of-the-art almost-uniform sampler. Given a formula in CNF, this class can be
used to apply almost-uniform sampling of the formula’s models, subject to a few input parameters.

The class initialiser receives a number of input arguments. The formula argument can be left unspecified at this
stage. In this case, a user is expected to add all the relevant clauses using add_clause().

Additional parameters a user may want to specify include integer seed (used by ApproxMC), tolerance fac-
tor epsilon (used in the probabilistic guarantees of almost-uniformity), confidence parameter delta (used by
ApproxMC), and uniformity parameter kappa (seePage 109, 2).

Parameters

• formula (CNF) – CNF formula

• seed (int) – seed value

• epsilon (float) – tolerance factor

• delta (float) – confidence parameter (used by ApproxMC)

• kappa (float) – uniformity parameter

• verbose (int) – verbosity level

>>> from pysat.allies.unigen import Sampler
>>> from pysat.formula import CNF
>>>
>>> cnf = CNF(from_file='some-formula.cnf')
>>> with Sampler(formula=cnf, epsilon=0.1, delta=0.9) as sampler:
... for model in sampler.sample(nof_samples=100):
... print(model) # printing 100 result samples

add_clause(clause)
The method for adding a clause to the problem formula. Although the input formula can be specified as an
argument of the constructor of Sampler, adding clauses may also be helpful afterwards, on the fly.

The clause to add can be any iterable over integer literals.

Parameters clause (iterable(int)) – a clause to add

>>> from pysat.allies.unigen import Sampler
>>>
>>> with Sampler() as sampler:
... sampler.add_clause(range(1, 4))
... sampler.add_clause([3, 4])
...
... print(sampler.sample(nof_samples=4))
[[1, 2, -3, 4], [-1, 2, -3, 4], [1, 2, 3, -4], [-1, 2, 3, 4]]

delete()

Explicit destructor of the internal Sampler oracle. Delete the actual sampler object and sets it to None.

sample(nof_samples, sample_over=None, counts=None)
Given the formula provided by the user either in the constructor of Sampler or through a series of calls to
add_clause(), this method runs the UniGen3 sampler with the specified values of tolerance 𝜀, confidence

110 Chapter 1. API documentation

PySAT Documentation, Release 1.8.dev17

𝛿 parameters, and uniformity parameter 𝑘𝑎𝑝𝑝𝑎 as well as the random seed value, and outputs a requested
number of samples.

A user may specify an argument sample_over, which is a list of integers specifying the variables with
respect to which sampling should be performed. If sample_over is left as None, almost-uniform sampling
is done wrt. all the variables of the input formula.

Finally, argument counts can be specified as a pair of integer values: cell count and hash count (in this
order) used during sampling. If left undefined (None), the values are determined by ApproxMC.

Parameters

• nof_samples (int) – number of samples to output

• sample_over (list(int)) – variables to sample over

• counts ([int, int]) – cell count and hash count values

Returns a list of samples

>>> from pysat.allies.unigen import Sampler
>>> from pysat.card import CardEnc, EncType
>>>
>>> # cardinality constraint with auxiliary variables
>>> # there are exactly 6 models for the constraint
>>> # over the 6 original variables
>>> cnf = CardEnc.equals(lits=range(1, 5), bound=2, encoding=EncType.totalizer)
>>>
>>> with Sampler(formula=cnf, epsilon=0.05, delta=0.95) as sampler:
... for model in sampler.sample(nof_samples=3):
... print(model)
[1, -2, 3, -4, 5, 6, -7, -8, 9, -10, 11, -12, 13, 14, -15, 16, 17, -18, 19, -20]
[1, -2, -3, 4, 5, 6, -7, -8, 9, -10, 11, -12, 13, 14, -15, 16, 17, -18, 19, -20]
[1, 2, -3, -4, 5, 6, -7, 8, -9, -10, 11, 12, 13, 14, -15, 16, 17, 18, -19, -20]
>>>
>>> # now, sampling over the original variables
>>> with Sampler(formula=cnf, epsilon=0.05, delta=0.95) as sampler:
... for model in sampler.sample(nof_samples=3, sample_over=range(1, 5)):
... print(model)
[1, 2, -3, -4]
[1, -2, 3, -4]
[-1, 2, 3, -4]

1.3. Supplementary allies package 111

PySAT Documentation, Release 1.8.dev17

112 Chapter 1. API documentation

PYTHON MODULE INDEX

a
allies.approxmc, 106
allies.unigen, 108

e
examples.fm, 72
examples.genhard, 75
examples.hitman, 78
examples.lbx, 82
examples.lsu, 86
examples.mcsls, 88
examples.models, 92
examples.musx, 93
examples.optux, 95
examples.rc2, 98

p
pysat.card, 3
pysat.engines, 43
pysat.formula, 9
pysat.pb, 49
pysat.process, 51
pysat.solvers, 55

113

PySAT Documentation, Release 1.8.dev17

114 Python Module Index

INDEX

Symbols
_assert_lt() (examples.lsu.LSU method), 87
_assert_lt() (examples.lsu.LSUPlus method), 88
_compute() (examples.fm.FM method), 73
_compute() (examples.lbx.LBX method), 83
_compute() (examples.mcsls.MCSls method), 90
_compute() (examples.musx.MUSX method), 94
_disjoint() (examples.optux.OptUx method), 97
_filter_satisfied() (examples.lbx.LBX method), 84
_get_model_cost() (examples.lsu.LSU method), 87
_init() (examples.lsu.LSU method), 87
_map_extlit() (examples.lbx.LBX method), 84
_map_extlit() (examples.mcsls.MCSls method), 90
_map_extlit() (examples.rc2.RC2 method), 100
_overapprox() (examples.mcsls.MCSls method), 90
_process_soft() (examples.optux.OptUx method), 97
_satisfied() (examples.lbx.LBX method), 84

A
abandon_unweighted()

(pysat.engines.LinearConstraint method),
46

abandon_weighted() (pysat.engines.LinearConstraint
method), 47

accum_stats() (pysat.solvers.Solver method), 59
activate_atmost() (pysat.solvers.Solver method), 60
activate_clauses() (examples.rc2.RC2Stratified

method), 105
adapt_am1() (examples.rc2.RC2 method), 100
adaptive_constants() (pysat.engines.BooleanEngine

method), 45
adaptive_update() (pysat.engines.BooleanEngine

method), 45
add_atmost() (pysat.solvers.Solver method), 60
add_clause() (allies.approxmc.Counter method), 107
add_clause() (allies.unigen.Sampler method), 110
add_clause() (examples.lbx.LBX method), 84
add_clause() (examples.mcsls.MCSls method), 90
add_clause() (examples.rc2.RC2 method), 100
add_clause() (pysat.engines.BooleanEngine method),

45
add_clause() (pysat.engines.Propagator method), 48

add_clause() (pysat.process.Processor method), 53
add_clause() (pysat.solvers.Solver method), 60
add_constraint() (pysat.engines.BooleanEngine

method), 45
add_hard() (examples.hitman.Hitman method), 80
add_xor_clause() (pysat.solvers.Solver method), 61
allies.approxmc

module, 106
allies.unigen

module, 108
And (class in pysat.formula), 12
append() (pysat.formula.CNF method), 15
append() (pysat.formula.CNFPlus method), 21
append() (pysat.formula.WCNF method), 34
append() (pysat.formula.WCNFPlus method), 39
append_formula() (pysat.process.Processor method),

53
append_formula() (pysat.solvers.Solver method), 61
atleast() (pysat.card.CardEnc class method), 4
atleast() (pysat.pb.PBEnc class method), 51
atmost() (pysat.card.CardEnc class method), 5
atmost() (pysat.pb.PBEnc class method), 51
Atom (class in examples.hitman), 80
Atom (class in pysat.formula), 13
attach_values() (pysat.engines.LinearConstraint

method), 47
attach_vpool() (pysat.formula.Formula static

method), 26

B
block() (examples.hitman.Hitman method), 81
block() (examples.lbx.LBX method), 84
block() (examples.mcsls.MCSls method), 91
BooleanEngine (class in pysat.engines), 44

C
CardEnc (class in pysat.card), 4
CB (class in examples.genhard), 76
check_model() (pysat.engines.BooleanEngine method),

45
check_model() (pysat.engines.Propagator method), 48
clausify() (pysat.formula.Formula method), 26

115

PySAT Documentation, Release 1.8.dev17

cleanup() (pysat.formula.Formula static method), 27
cleanup_watched() (pysat.engines.BooleanEngine

method), 45
clear_interrupt() (examples.lsu.LSU method), 87
clear_interrupt() (pysat.solvers.Solver method), 61
CNF (class in pysat.formula), 14
CNFPlus (class in pysat.formula), 20
compute() (examples.fm.FM method), 73
compute() (examples.lbx.LBX method), 85
compute() (examples.mcsls.MCSls method), 91
compute() (examples.musx.MUSX method), 94
compute() (examples.optux.OptUx method), 97
compute() (examples.rc2.RC2 method), 101
compute() (examples.rc2.RC2Stratified method), 105
compute_() (examples.rc2.RC2 method), 101
conf_budget() (pysat.solvers.Solver method), 61
configure() (pysat.solvers.Solver method), 62
connect_propagator() (pysat.solvers.Solver method),

62
copy() (pysat.formula.CNF method), 15
copy() (pysat.formula.CNFPlus method), 21
copy() (pysat.formula.WCNF method), 34
copy() (pysat.formula.WCNFPlus method), 40
count() (allies.approxmc.Counter method), 108
Counter (class in allies.approxmc), 107
create_sum() (examples.rc2.RC2 method), 101

D
dec_budget() (pysat.solvers.Solver method), 62
decide() (pysat.engines.BooleanEngine method), 45
decide() (pysat.engines.Propagator method), 48
delete() (allies.approxmc.Counter method), 108
delete() (allies.unigen.Sampler method), 110
delete() (examples.fm.FM method), 73
delete() (examples.hitman.Hitman method), 81
delete() (examples.lbx.LBX method), 85
delete() (examples.lsu.LSU method), 87
delete() (examples.mcsls.MCSls method), 91
delete() (examples.musx.MUSX method), 94
delete() (examples.optux.OptUx method), 97
delete() (examples.rc2.RC2 method), 102
delete() (pysat.card.ITotalizer method), 6
delete() (pysat.process.Processor method), 54
delete() (pysat.solvers.Solver method), 63
disable() (pysat.engines.BooleanEngine method), 45
disable_propagator() (pysat.solvers.Solver method),

63
disconnect_propagator() (pysat.solvers.Solver

method), 63
do_cld_check() (examples.lbx.LBX method), 85
do_cld_check() (examples.mcsls.MCSls method), 91

E
enable() (pysat.engines.BooleanEngine method), 45

enable_propagator() (pysat.solvers.Solver method),
63

EncType (class in pysat.card), 5
EncType (class in pysat.pb), 50
enum_models() (pysat.solvers.Solver method), 63
enumerate() (examples.hitman.Hitman method), 81
enumerate() (examples.lbx.LBX method), 85
enumerate() (examples.mcsls.MCSls method), 91
enumerate() (examples.optux.OptUx method), 97
enumerate() (examples.rc2.RC2 method), 102
enumerate_models() (in module examples.models), 92
Equals (class in pysat.formula), 24
equals() (pysat.card.CardEnc class method), 5
equals() (pysat.pb.PBEnc class method), 51
examples.fm

module, 72
examples.genhard

module, 75
examples.hitman

module, 78
examples.lbx

module, 82
examples.lsu

module, 86
examples.mcsls

module, 88
examples.models

module, 92
examples.musx

module, 93
examples.optux

module, 95
examples.rc2

module, 98
exhaust_core() (examples.rc2.RC2 method), 102
explain_failure() (pysat.engines.LinearConstraint

method), 47
export_vpool() (pysat.formula.Formula static

method), 27
extend() (pysat.card.ITotalizer method), 6
extend() (pysat.formula.CNF method), 15
extend() (pysat.formula.CNFPlus method), 22
extend() (pysat.formula.WCNF method), 34

F
falsified_by() (pysat.engines.LinearConstraint

method), 47
filter_assumps() (examples.rc2.RC2 method), 102
finish_level() (examples.rc2.RC2Stratified method),

105
FM (class in examples.fm), 73
Formula (class in pysat.formula), 25
FormulaError, 29
formulas() (pysat.formula.Formula static method), 27

116 Index

PySAT Documentation, Release 1.8.dev17

FormulaType (class in pysat.formula), 29
found_optimum() (examples.lsu.LSU method), 88
from_aiger() (pysat.formula.CNF method), 16
from_clauses() (pysat.formula.CNF method), 16
from_file() (pysat.formula.CNF method), 17
from_file() (pysat.formula.WCNF method), 35
from_fp() (pysat.formula.CNF method), 17
from_fp() (pysat.formula.CNFPlus method), 22
from_fp() (pysat.formula.WCNF method), 35
from_fp() (pysat.formula.WCNFPlus method), 40
from_string() (pysat.formula.CNF method), 17
from_string() (pysat.formula.WCNF method), 36

G
geq() (pysat.pb.PBEnc class method), 51
get() (examples.hitman.Hitman method), 81
get_core() (examples.rc2.RC2 method), 103
get_core() (pysat.solvers.Solver method), 64
get_model() (examples.lsu.LSU method), 88
get_model() (pysat.solvers.Solver method), 64
get_proof() (pysat.solvers.Solver method), 64
get_status() (pysat.process.Processor method), 54
get_status() (pysat.solvers.Solver method), 65
GT (class in examples.genhard), 76

H
hit() (examples.hitman.Hitman method), 81
Hitman (class in examples.hitman), 80

I
id() (pysat.formula.IDPool method), 30
IDPool (class in pysat.formula), 29
ignore() (pysat.solvers.Solver method), 65
Implies (class in pysat.formula), 31
increase() (pysat.card.ITotalizer method), 7
init() (examples.fm.FM method), 73
init() (examples.hitman.Hitman method), 81
init() (examples.rc2.RC2 method), 103
init_wstr() (examples.rc2.RC2Stratified method), 105
interrupt() (examples.lsu.LSU method), 88
interrupt() (pysat.solvers.Solver method), 65
is_active() (pysat.engines.BooleanEngine method),

45
is_decision() (pysat.solvers.Solver method), 66
ITE (class in pysat.formula), 31
ITotalizer (class in pysat.card), 5

J
justify_unweighted()

(pysat.engines.LinearConstraint method),
47

justify_weighted() (pysat.engines.LinearConstraint
method), 47

L
LBX (class in examples.lbx), 83
leq() (pysat.pb.PBEnc class method), 51
LinearConstraint (class in pysat.engines), 46
literals() (pysat.formula.Formula static method), 28
LSU (class in examples.lsu), 87
LSUPlus (class in examples.lsu), 88

M
MCSls (class in examples.mcsls), 90
merge_with() (pysat.card.ITotalizer method), 7
minimize_core() (examples.rc2.RC2 method), 103
module

allies.approxmc, 106
allies.unigen, 108
examples.fm, 72
examples.genhard, 75
examples.hitman, 78
examples.lbx, 82
examples.lsu, 86
examples.mcsls, 88
examples.models, 92
examples.musx, 93
examples.optux, 95
examples.rc2, 98
pysat.card, 3
pysat.engines, 43
pysat.formula, 9
pysat.pb, 49
pysat.process, 51
pysat.solvers, 55

MUSX (class in examples.musx), 94

N
Neg (class in pysat.formula), 32
negate() (pysat.formula.CNF method), 18
new() (pysat.card.ITotalizer method), 8
new() (pysat.solvers.Solver method), 66
next_level() (examples.rc2.RC2Stratified method),

105
nof_clauses() (pysat.solvers.Solver method), 66
nof_vars() (pysat.solvers.Solver method), 66
normalize_negatives() (pysat.formula.WCNF

method), 36
NoSuchEncodingError, 8, 50
NoSuchSolverError, 58

O
obj() (pysat.formula.IDPool method), 30
observe() (pysat.solvers.Solver method), 66
occupy() (pysat.formula.IDPool method), 30
on_assignment() (pysat.engines.BooleanEngine

method), 45

Index 117

PySAT Documentation, Release 1.8.dev17

on_assignment() (pysat.engines.Propagator method),
48

on_backtrack() (pysat.engines.BooleanEngine
method), 45

on_backtrack() (pysat.engines.Propagator method),
48

on_new_level() (pysat.engines.BooleanEngine
method), 45

on_new_level() (pysat.engines.Propagator method),
49

OptUx (class in examples.optux), 96
Or (class in pysat.formula), 32
oracle_time() (examples.fm.FM method), 74
oracle_time() (examples.hitman.Hitman method), 82
oracle_time() (examples.lbx.LBX method), 85
oracle_time() (examples.lsu.LSU method), 88
oracle_time() (examples.mcsls.MCSls method), 91
oracle_time() (examples.musx.MUSX method), 94
oracle_time() (examples.optux.OptUx method), 98
oracle_time() (examples.rc2.RC2 method), 103

P
PAR (class in examples.genhard), 77
PBEnc (class in pysat.pb), 50
PHP (class in examples.genhard), 77
preprocess() (pysat.engines.BooleanEngine method),

46
process() (pysat.process.Processor method), 54
process_am1() (examples.rc2.RC2 method), 103
process_am1() (examples.rc2.RC2Stratified method),

105
process_core() (examples.rc2.RC2 method), 103
process_linear() (pysat.engines.BooleanEngine

method), 46
process_parity() (pysat.engines.BooleanEngine

method), 46
process_sels() (examples.rc2.RC2 method), 104
process_sels() (examples.rc2.RC2Stratified method),

105
process_sums() (examples.rc2.RC2 method), 104
process_sums() (examples.rc2.RC2Stratified method),

105
Processor (class in pysat.process), 53
prop_budget() (pysat.solvers.Solver method), 66
propagate() (pysat.engines.BooleanEngine method),

46
propagate() (pysat.engines.Propagator method), 49
propagate() (pysat.solvers.Solver method), 67
propagate_unweighted()

(pysat.engines.LinearConstraint method),
47

propagate_weighted()
(pysat.engines.LinearConstraint method),
47

Propagator (class in pysat.engines), 47
propagator_active() (pysat.solvers.Solver method),

67
provide_reason() (pysat.engines.BooleanEngine

method), 46
provide_reason() (pysat.engines.Propagator method),

49
pysat.card

module, 3
pysat.engines

module, 43
pysat.formula

module, 9
pysat.pb

module, 49
pysat.process

module, 51
pysat.solvers

module, 55

R
RC2 (class in examples.rc2), 99
RC2Stratified (class in examples.rc2), 104
register_watched() (pysat.engines.LinearConstraint

method), 47
reinit() (examples.fm.FM method), 74
relax_core() (examples.fm.FM method), 74
remove_unit_core() (examples.fm.FM method), 74
reset_observed() (pysat.solvers.Solver method), 67
restart() (pysat.formula.IDPool method), 31
restore() (pysat.process.Processor method), 55

S
sample() (allies.unigen.Sampler method), 110
Sampler (class in allies.unigen), 110
satisfied() (pysat.formula.Formula method), 28
set_bound() (examples.rc2.RC2 method), 104
set_context() (pysat.formula.Formula static method),

29
set_phases() (pysat.solvers.Solver method), 68
setup_observe() (pysat.engines.BooleanEngine

method), 46
simplified() (pysat.formula.And method), 13
simplified() (pysat.formula.Atom method), 14
simplified() (pysat.formula.CNF method), 18
simplified() (pysat.formula.Equals method), 25
simplified() (pysat.formula.Formula method), 29
simplified() (pysat.formula.Implies method), 31
simplified() (pysat.formula.ITE method), 31
simplified() (pysat.formula.Neg method), 32
simplified() (pysat.formula.Or method), 33
simplified() (pysat.formula.XOr method), 43
solve() (examples.lsu.LSU method), 88
solve() (pysat.solvers.Solver method), 68

118 Index

PySAT Documentation, Release 1.8.dev17

solve_limited() (pysat.solvers.Solver method), 69
Solver (class in pysat.solvers), 58
SolverNames (class in pysat.solvers), 71
split_core() (examples.fm.FM method), 74
start_mode() (pysat.solvers.Solver method), 70
supports_atmost() (pysat.solvers.Solver method), 70
switch_phase() (examples.hitman.Hitman method), 82

T
time() (pysat.solvers.Solver method), 70
time_accum() (pysat.solvers.Solver method), 71
to_alien() (pysat.formula.CNF method), 18
to_alien() (pysat.formula.CNFPlus method), 23
to_alien() (pysat.formula.WCNF method), 36
to_alien() (pysat.formula.WCNFPlus method), 40
to_dimacs() (pysat.formula.CNF method), 19
to_dimacs() (pysat.formula.CNFPlus method), 23
to_dimacs() (pysat.formula.WCNF method), 37
to_dimacs() (pysat.formula.WCNFPlus method), 41
to_file() (pysat.formula.CNF method), 19
to_file() (pysat.formula.WCNF method), 37
to_fp() (pysat.formula.CNF method), 20
to_fp() (pysat.formula.CNFPlus method), 23
to_fp() (pysat.formula.WCNF method), 37
to_fp() (pysat.formula.WCNFPlus method), 41
treat_core() (examples.fm.FM method), 74
trim_core() (examples.rc2.RC2 method), 104

U
unassign() (pysat.engines.LinearConstraint method),

47
UnsupportedBound, 9
unweighted() (pysat.formula.WCNF method), 38
unweighted() (pysat.formula.WCNFPlus method), 42
update_sum() (examples.rc2.RC2 method), 104

W
WCNF (class in pysat.formula), 33
WCNFPlus (class in pysat.formula), 38
weighted() (pysat.formula.CNF method), 20
weighted() (pysat.formula.CNFPlus method), 24
with_traceback() (pysat.card.NoSuchEncodingError

method), 8
with_traceback() (pysat.card.UnsupportedBound

method), 9
with_traceback() (pysat.pb.NoSuchEncodingError

method), 50
with_traceback() (pysat.solvers.NoSuchSolverError

method), 58

X
XOr (class in pysat.formula), 42

Index 119

	API documentation
	Core PySAT modules
	Cardinality encodings (pysat.card)
	List of classes
	Module description
	Module details

	Boolean formula manipulation (pysat.formula)
	List of classes
	Module description
	Module details

	External engines (pysat.engines)
	List of classes
	Module description
	Module details

	Pseudo-Boolean encodings (pysat.pb)
	List of classes
	Module description
	Module details

	Formula processing (pysat.process)
	List of classes
	Module description
	Module details

	SAT solvers’ API (pysat.solvers)
	List of classes
	Module description
	Module details

	Supplementary examples package
	Fu&Malik MaxSAT algorithm (pysat.examples.fm)
	List of classes
	Module description
	Module details

	Hard formula generator (pysat.examples.genhard)
	List of classes
	Module description
	Module details

	Minimum/minimal hitting set solver (pysat.examples.hitman)
	List of classes
	Module description
	Module details

	LBX-like MCS enumerator (pysat.examples.lbx)
	List of classes
	Module description
	Module details

	LSU algorithm for MaxSAT (pysat.examples.lsu)
	List of classes
	Module description
	Module details

	CLD-like MCS enumerator (pysat.examples.mcsls)
	List of classes
	Module description
	Module details

	An iterative model enumerator (pysat.examples.models)
	List of classes
	Module description
	Module details

	A deletion-based MUS extractor (pysat.examples.musx)
	List of classes
	Module description
	Module details

	OptUx optimal MUS enumerator (pysat.examples.optux)
	List of classes
	Module description
	Module details

	RC2 MaxSAT solver (pysat.examples.rc2)
	List of classes
	Module description
	Module details

	Supplementary allies package
	ApproxMC model counter (pysat.allies.approxmc)
	List of classes
	Module description
	Module details

	UniGen almost-uniform sampler (pysat.allies.unigen)
	List of classes
	Module description
	Module details

	Python Module Index
	Index

